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Abstract

A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore
ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between
stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the ‘ergodic’
hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function
method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are
obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models.
Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity
and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to
the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on
retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The
relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to
account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction ples [2]. Because of the limited resolution and peak
capacity of SEC, the use of peak deconvolution

Size exclusion chromatography (SEC) is the most procedures able to correctly account for the peak
widespread technique for polymer molecular mass shape features is equally important for the precision.
determination [1]. As is well known, this determi- These procedures are all based on some theoretical
nation relies on a calibration step based on the assumptions about the peak shape of individual
retention of well-characterized monodispersed sam- macromolecular components of the sample and thus

any advance in theoretical modelling of these aspects
will introduce a benefit for a good SEC practice.*Corresponding author. Fax: 139-0532-240-709.
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reviews of Refs. [1,3–5]) have been intended to ty of SEC. In fact, his treatment of the effect of
throw light on the dependence between retention and packing pore size distribution [18] was new and
dimensions and shape of the separated species. mainly intuitive, but not completely rigorous since
Various possible retention mechanisms were iden- he considered only the mean residence time depen-
tified [3–6] such as hydrodynamically and stress- dence in pores. Moreover the hypothesis that macro-
induced diffusion, the polarization effect, multipath, molecules of different sizes spend the same time
enthalpic and soft body interactions [7]. However the within pores is limiting, if not unacceptable.
size exclusion effect of macromolecules within the The partial failure of Carmichael’s work on SEC
stagnant zone entrapped in the porous or gel column was dependent on the fact that he only translated the
packing material is today recognized as the most original mathematical handling of Giddings and
important one [8]. In this instance, separation is Eyring into the SEC context without making further
accounted for by a pure entropic mechanism, i.e. by advances in handling the complexity of the SEC
the relative loss of the number of configurations, or process. This can be understood and explained with
accessible volume, of a partitioning species in the just the following thoughts of Giddings, the father of
stagnant zone [9–11]. These size exclusion models the stochastic theory: ‘one aspect of the stochastic
are also called ‘equilibrium’ or ‘thermodynamic’ theory which has been pursued from the beginning is
models since they correctly account for the differen- the effect of a nonuniform surface with different
tial partition both in static experiments and in kinds of adsorption sites. The mathematics rapidly
dynamical chromatographic separations [3,12,13]. becomes intractable, however, as we pass from the
None of these models, however, gives insight into sheltered simplicity of one site theory’ [21]. Thus the
peak shape and peak broadening in SEC. limit was not in the stochastic approach, but in the

The stochastic theory of chromatography, origi- mathematical tools employed at that time.
nally conceived by Giddings and Eyring in 1955 Several important contributions to stochastic
[14], further elaborated by Giddings [15] and by theory of chromatography appeared after the original
McQuarrie [16] to account for adsorption chromatog- Carmichael’s work on SEC. Most important were the
raphy, was recast by Carmichael to represent SEC Weiss contributions [22,23] accounting for mobile
processes [17–20]. In fact the stochastic theory of phase dispersion and column heterogeneity. However
chromatography, by representing the migration of a this advancement leads to complex mathematics and
molecule along the chromatographic bed as a random was not systematically applied to study the many
chain of ingress–egress steps on identical binding open points in chromatography, including the SEC
sites of the stationary phase is completely indepen- problem. Moreover the determination of the exact
dent of the specific physicochemical mechanism peak shape has not been solved. With the intro-
responsible for retention and can represent all types duction of the characteristic function (CF) method in
of chromatography. As remarked by Casassa in the stochastic theory of chromatography, the mathemati-
case of SEC [13], ‘all we then have to do is to cal intractability was completely overcome [24,25].
replace the word ‘adsorption’ by the phrase ‘entrap- For example, the problem of stationary phase hetero-
ment in micropores’ and recognize that in SEC, geneity proves to be fully tractable [26,27]; moving
unlike adsorption chromatography, the solvent — zone dispersion effects can be accounted for [28];
consisting of small molecules and, therefore, most mixed retention mechanisms can be considered as
easily trapped in voids — is retarded in the column well [26]. Thus there is no a priori limit in handling
relative to macromolecular solutes’. The superiority the complexity of the SEC problem, including the
of the stochastic theory with respect to other theories effect of the pore heterogeneity and different size
lies in its ability both to account for the dynamical separation mechanisms, e.g. separation by flow [29].
character of the chromatographic process and to By the CF approach the exact peak shape can be
determine the exact peak shape, i.e. it is at the same obtained by CF numerical inversion [27,30]. Further-
time able to explain and represent the chromato- more the peak shape can be fully analyzed by
graphic process. Carmichael, however, did not determining its statistical moments from the deriva-
achieve complete success in mastering the complexi- tives of the CF [25].
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Here the stochastic theory of SEC is reconsidered [4] is generally much lower than that of the intersti-
in the light of the characteristic function approach. A tial space, the carrier is assumed to be essentially
general model for a single pore type (‘monopore’ stagnant inside this intraparticle space which there-
model), a model for two pore types (‘two-pore’ fore is called the stagnant zone (labelled p, to recall
model), and a model accounting for dispersion the pore structure concept). The volumes occupied
within the moving zone will be successively de- by the carrier in the moving and stagnant zones
veloped and exploited. Among the different band within the column are denoted V and V , respective-0 p

broadening phenomena, attention will be focused ly.
mainly on those determining size exclusion effects, The accurate determination of these two volumes
i.e. the pore ingress and egress processes. It must be is not obvious [5]. It is generally made by measuring
underlined that many of the models exploited have the retention times of two species, a totally perme-
potential impact for both column packing design and able species, supposed to have access to the whole
SEC practice. However emphasis will be devoted volume (V 1V ) occupied by the carrier in the0 p

mostly to theoretical aspects of the CF approach and column and a species which is totally excluded from
to its potential results in SEC research. Exhaustive the intraparticle porous structure. These species are
handling of all the topics raised lies beyond the aims referred to by subscripts perm and excl, respectively.
of the present investigation, but they can be dealt It is reasonable to suppose that a small solute of a
with separately. molecular size similar to that of the carrier can

effectively act as a totally permeable species which
can sample the whole V 1V volume. However, the0 p

2. Theory selection of a totally excluded species is not trivial.
Indeed, a macromolecule large enough to be sterical-

2.1. Size exclusion chromatographic quantities and ly excluded from the intraparticle volume is also
size exclusion thermodynamic quantities likely to be sterically excluded from that part of the

interstitial volume in the immediate vicinity of the
The chromatographic parameters used to char- outside surface of the solid particles. The retention

acterize retention and separation in SEC and the time of such a species is then more or less affected
relationships between them are well known. How- by mechanisms involved in hydrodynamic chroma-
ever, in order to better appreciate the features of the tography [4], and may differ somewhat from the

¯stochastic approach, it is useful to briefly recall them mean elution time t of a hypothetical species which0

and to discuss the sometimes overlooked hypotheses would sample the whole volume V .0

which underlie these parameters and relationships. Two basic parameters are employed to experimen-
In the following, we consider a well-defined tally measure the retention of species i:

chemical species i of the sample, which is thus
¯ ¯t 2 tc,i c,exclassumed monodispersed. This species is retained in ]]]]K 5 (1)SEC,i ¯ ¯t 2 tthe SEC column. Although the stochastic approach c, perm c,excl

does not imply a given retention mechanism and can
¯ ¯t 2 tbe adapted to any individual or mixed mechanism, c,i c,excl
]]]99k 5 (2)iwe consider here that this species is essentially t̄c,excl

retained by a size exclusion mechanism. Retention is
¯thus based on partition of the sample species be- where the various t s are the mean residence times ofc

tween two regions occupied by the carrier liquid in the corresponding species in the column. These times
the column: the interstitial space, where the carrier is correspond to the first moments of the peaks. In the
effectively flowing between the solid particles mak- following, the bars over the quantities indicate mean
ing up the column and which is therefore called the quantities, whereas quantities without the bar indi-
moving zone (labelled 0), and the space occupied by cate random variables. The use of this notation is
the carrier in the porous structure inside the packing dictated by the sake of precision since here a
particles. As the permeability of this porous structure molecular stochastic approach is developed. We note
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¯that a t quantity corresponds to the classical defini- n of small time contributions, t or t which are thec p 0 p

tion of retention time (t ) of the corresponding times spent in that zone between two subsequentR

species. It is assumed that elution is carried out zone changes. Because of the random character of
under the condition of infinite dilution (linearity the chromatographic process, both the total time, t,
condition). It is thus apparent that K is evaluated and the two individual quantities, n and t, areSEC

by using three species (i, excl, perm) instead of two random quantities. However it can be intuitively
¯as in other chromatographic techniques. assumed that the mean total time t is equal to the

In order to derive the link between chromato- product of the mean values of the two individual
¯ ¯graphic quantities and equilibrium or kinetic quan- random n and t quantities, i.e. equal to n 3 t. This

tities two groups of hypotheses must be assumed: the assumption is reasonable but its proof is not trivial: it
first group is essentially chromatographic, the second will be one of the results of the CF method (see the
one relates to the statistical thermodynamics (ergodic following section). Therefore for the different species
hypothesis). and zones the following equations must hold true:

t̄ is first assumed to be the measure of thec,excl ¯ ¯ ¯(a) t 5 n tp,i p,i p,imean time spent by an inert tracer in the moving
¯ ¯ ¯(b) t 5 n t¯zone, t : 0,i 0,i 0,i0 HYP 3 (9)¯ ¯ ¯(c) t 5 n tp, perm p, perm p, perm¯ ¯HYP 1 t 5 t (3) 6c,excl 0
¯ ¯ ¯(d) t 5 n t0, perm 0, perm 0, perm

Thus, no hydrodynamic chromatography effect is
By introducing Eqs. (3), (4), (9a)–(9d) in Eqs. (7)acting on excl species transport, as mentioned above.
and (8), one has:Likewise, all the species i, excl and perm are

¯assumed to spend the same mean time t in the0 ¯ ¯ ¯ ¯n t n tp,i p,i 0, perm 0, perm
moving zone: ]]]]]]K 5 (10)SEC,i ¯ ¯ ¯ ¯n t n t0,i 0,i p, perm p, perm

¯ ¯ ¯HYP 2 t 5 t 5 t (4)0,i 0, perm 0 ¯ ¯n tp,i p,i
]]99k 5 (11)iThe mean times spent by the species i and perm in ¯ ¯n t0,i 0,i

¯ ¯the stagnant zone, t and t , respectively, arep,i p, perm
If the number of ingress steps is equal to the numberthen defined as:
of egress steps from the stagnant zone, one has, for

¯ ¯ ¯t 5 t 2 t (5)p,i c,i c,excl both the species i and perm:

and ¯ ¯(a) n 5 n0,i p,i
HYP 4 (12)J¯ ¯ ¯ ¯ ¯t 5 t 2 t (6) (b) n 5 np, perm c, perm c,excl 0, perm p, perm

By combining Eqs. (12a), (12b), (10) and (11), oneIf all the above mentioned hypotheses hold true,
obtains:the experimental measurements of either K or k0SEC

t̄can be expressed as: p,i
]S Dt̄0,i¯ ¯ ¯t t tp,i p,i 0, perm ]]]K 5 (13)SEC,i ¯]] ]]] tK 5 5 (7) p, permSEC ¯ ¯ ¯t t t ]]p, perm 0,i p, perm S Dt̄0, perm

and
t̄p,i
]99¯ k 5 (14)t ip,i t̄0,i]99k 5 (8)i t̄0,i

and, by combining Eqs. (13) and (14):
The total times spent by one molecule of the

t̄0, permdifferent species in the moving or stagnant zones, t0 ]]99K 5 k (15)SEC,i i t̄p, permor t are expressed by a sum of a large number, n orp 0
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eqIn order that HYP 4 (Eqs. (12a) and (12b)), holds cp, perm
]]true, it is required that no molecule of a given K 5 5 1 (19)eqSEC, perm c0, permspecies leaves the column without having ‘visited’

the stagnant zone. Moreover it is assumed that the which specifies the properties of the perm species.
sample is introduced in the column in the moving Likewise, by applying the ergodic hypothesis
zone and the elution process starts immediately (HYP 5, Eq. (16)) to an equilibrium condition over
before allowing the species to reach partition equilib- the whole column volumes V and V in Eq. (8), one0 p
rium between the two zones. If such a relaxation derives:
process is not made — as is usual in chromatography

eqc Vp,i p¯— HYP 4 is met only when the n quantities are large
]]99k 5 (20)eqi Venough and consequently there are no differences c 00,i

¯ ¯between n and n . The problem will be handled0 p
and thus:later on in the context of the stochastic theory.

Eqs. (13) and (14) establish a link between V0
]99K 5 k (21)SEC,i ichromatographic quantities, K and k0, and micro-SEC Vp

¯scopic kinetic quantities t, provided that the hypoth-
Eqs. (13) and (18) give, respectively, the kineticeses 1–4 hold true. In order to establish a link
interpretation and the equilibrium–thermodynamicbetween chromatographic quantities and equilibrium
interpretation of K , the ergodic hypothesis of Eq.quantities, the ergodic hypothesis must be assumed SEC

(16) being the bridge between them. It can be seen[31]. In the present case, this can be formulated by
that K , even if it cannot furnish estimates of thesaying that, in a phase exchange at equilibrium, the SEC

eq separate kinetic quantities concerning the pore in-mean number of molecules N in a given phaseb,i
¯ gress and egress processes, nonetheless depends ondomain V is proportional to the mean time t spentb b,i

their ratio. Moreover it is allowed to translate thein that phase domain by a single species:
various equilibrium thermodynamic models [3,8–12]

eq eq ¯HYP 5 N 5 c V ~t (16) into the kinetic analogue. This correspondence canb,i b,i b b,i

indeed be found in theoretical handling of hindered
where the superscript ‘eq’ indicates the ‘equilibrium’ transport of large molecules in liquid-filled pores
condition, i.e. that condition reached in a batch [32]: both the methods employed and the derived
process after a long time. Moreover it is assumed expressions accounting for the exclusion effects are
that both the moving zone and the stagnant zone are similar to those derived for SEC either by using a
homogeneous from a thermodynamic point of view. pure equilibrium approach [9] or by solving the
In practice, no mixed retention mechanisms are diffusion equation [9,10].
considered here. Under these conditions, by intro- The number of theoretical plates and the effective
ducing Eq. (16) into Eq. (7), the following equation number of theoretical plates are, respectively:
is derived:

2t̄c
]eq N 5 (22)S Dc sp,i t

]eqc 20,i ¯ 9t c]]K 5 (17)eqSEC,i ]N9 5 (23)S Dcp, perm st]]eqc0, perm where s is the standard deviation of the peak and:t

The classical expression: ¯ ¯ ¯ ¯9t 5 t 5 t 2 t (24)c p c 0

eqc is the mean time spent in the stagnant zone. Thep,i
]K 5 (18)eqSEC,i plate height is:c0,i

L
]H 5 (25)is obtained by assuming: N
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L being the column length. The mean moving zone sponds to v t . In Fig. 1, both t and t are random0 0 p 0
¯¯velocity v is related to t by: variables characterized by their frequency functions,0 0

f(t ) and f(t ), respectively. The chromatographicp 0¯ ¯L 5 t v (26)0 0 history and the corresponding trajectory will end
when the position l 5 L, where L is the columnThe skewness and the excess are, respectively:
length, is reached. Three types of molecules arek3

] represented in Fig. 1: totally excluded moleculesS 5 (27)3
s t always staying in the moving zone and two other

types of molecules which are retained by the porousk4
]E 5 (28)4 structure. In Fig. 1, v is assumed both constant and0s t independent of the species. The random character of

where k and k are the time-based third and fourth t has the consequence that the column residence3 4 p

cumulants of the chromatographic peak [33]. time is a random quantity, characterized by a given
distribution, i.e. the chromatographic peak. This,
however, holds true only for retained species and not2.2. The stochastic description of the
for the totally excluded ones, since moving zonechromatographic process
dispersion factors are here neglected. According to
the picture of Fig. 1, the resultant residence time is aFrom a stochastic point of view, the chromato-
sum of the random quantities t , the number of termsgraphic process can be described as a chain of p

of the sum, n, also being a random variable. In fact ningress–egress random processes, i.e. state ex-
is a random variable, with the specific distributionchanges of the sample molecules between the mov-
function P(n), because of the random character of theing zone and the stagnant zone occupied by the
t quantity. The task of the theory will be tocarrier liquid. 0

compute the result, i.e. the residence time distribu-Fig. 1 describes progress of single molecules in
tion, under the most general conditions. One generalthe column by a trajectory in the (l, t) plane, l being
feature must however be pointed out: the stochasticthe position of the molecule along the column length
theory of chromatography is a ‘pure’ chromatograph-at the time t. Each molecular trajectory is composed
ic theory, describing the dynamical features of theof a succession of slanting segments with slope equal
band migration [34–36]. Its strength lies in theto the moving zone velocity v and of horizontal0

ability to master the ‘chromatographic complexity’segments corresponding to the time t spent duringp

such as the combined effects of the stationary phaseeach step in the stagnant zone. An elementary
heterogeneity, nonconstant moving zone velocity,displacement step dl along the column axis corre-
etc. This approach requires only the knowledge of
the statistical properties of the times spent by the
molecule in the different steps (rate constants for the
zone exchange, time distributions). The specific
physicochemical aspects of the various zones (mov-
ing, stagnant) are not explicitly considered.

2.3. Classical stochastic model of SEC

Carmichael’s work was based on the Giddings–
Eyring treatment which corresponds to well-defined
hypotheses about the statistical characteristics of the
column processes, simply considered as first-order
processes with an exponential time distribution func-
tion. This SEC model will be here referred to as theFig. 1. Chromatographic process represented as a stochastic
Giddings–Eyring–Carmichael (GEC) model.process. Each molecule history is represented as a random

trajectory in the l, t plane. Constant moving zone velocity case. The fact that the time spent in the moving zone
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nbetween two consecutive ingress steps has an ex- f(t un; r, d) 5 f * (t ; r, d) (30)p p

ponential distribution function, has the important
represents the distribution of the time spent in theconsequence that P(n) is Poissonian. However it
stagnant zone by a molecule performing exactly nmust be pointed out that the property that the ingress
ingress steps. The symbol *n means an n-foldnumber is Poissonian does not mean that we can
convolution. The distribution of the column resi-identify a single ingress mechanism. The Poisson
dence time t is simply the t distribution scaled bydistribution is, in fact, the ‘limit’ distribution for c p

t̄ , since the hypothesis of constant moving zone‘point processes’, i.e. for an event series represented 0

velocity was put forward:as points over a time axis, here corresponding to
ingress events. This limit condition represents well ¯f(t ; r, d) 5 f (t 1 t ); r, d (31)f gc p 0the case of superimposition of a great number of
point processes, corresponding to different ingress It must be observed that, in Eq. (29), P n; r, d mayh j
mechanisms. However, even if strongly founded, the be significant for n 5 0 under certain conditions. This
Poisson distribution cannot be the only one driving means that the probability of performing zero entrap-
the pore ingress process. Pore access is more precise- ment steps is significant and the relative number of
ly driven by Brownian movement: when a molecule molecules travelling in the column without visiting
has arrived near a pore, it is likely that it visits this the stagnant zone will be high in these cases. This
pore more than once [36], before wandering to a new will produce the so-called ‘peak splitting’ at the time
pore. This matter has up to now been largely scale origin. This point will be explained in the
unexplored in its dependency on both molecule type Discussion.
and column structure. A general form for P(n) with
proper dependencies on the molecular size r and

2.4. The characteristic function methodpore size d, i.e. P(n; r, d) and for a given type of
column, must be allowed.

The CF is defined as the Fourier transform of theThe second hypothesis of the GEC model is that
probability density function [33,37,38]:the time spent in a single pore is exponential and

independent of molecule size [17] although the
iv trelevance of this last constraint was discussed by F v 5E e f t dt (32)s d s dc c

Carmichael [19]. Both of these hypotheses are too
restrictive and a general expression for the pore where i is the imaginary unit and v an auxiliary real
residence time distribution f(t ; r, d) must likewisep variable (frequency). f t dt represents the infini-s dc c
be allowed. Under these conditions, the general SEC tesimal probability that a molecule leaves the column
model has only the constraints of constancy of the after a column residence time between t and t 1c c
moving zone velocity and independence of the dt .c
ingress and egress processes. This general SEC The two CF expressions for the entry number, n,
model belongs to a broad class of stochastic pro- and for the pore residence time, t , are, respectively:p
cesses, the general composite processes or ‘mixture

ivnprocesses’, extensively described in probability F (v ; r, d) 5O e P(n; r, d) (33)n
ntheory. It can be shown [24,25] that the expression of

the stagnant zone retention time distribution has the and
following form:

ivtpF (v ; r, d) 5E e f t ; r, d dt (34)n5` s dt p pp

f(t ; r, d) 5O P n; r, d f(t un; r, d)h jp p
n50 The CF of the general model described by Eq. (29)
n5` can be obtained by using a log-exp transformation

n
5O P n; r, d f * (t ; r, d) (29)h j [24,25]:p

n50

ln F (v ; r, d)tpHF G J]]]]where: F (v ; r, d) 5 F ; r, d (35)t np i



943 (2002) 185–207192 F. Dondi et al. / J. Chromatogr. A

¯ ¯where F (v ; r, d) is the CF for the time t spent in where n (r, d) and t (r, d) are, respectively, thet p p pp

the stagnant zone by a molecule of dimension r, in a mean values of the ingress step number and of the
column having pore size d: time spent in a single pore. One can thus see that

Eqs. (9a)–(9c) hold true under these most general
iv tp conditions. Likewise one has the following equationF (v ; r, d) 5E e f(t ; r, d) dt (36)t p pp for the peak variance:

Note the simplicity of the expression (35) stating
2 2 2¯s (r, d) 5 s (r, d) t (r, d)f gthat, under general conditions, the CF of the stagnant t n pf gp p

zone residence time is equal to that of the stagnant
2¯1 n (r, d) s (r, d) (39)p tf gpzone entry number with the substitution of the

auxiliary variable v by the natural logarithm of the 2where the s are the variances of the quantitiespore residence time CF, divided by the imaginary
specified in the suffixes.unit i.

The HETP value corresponds, in this case, to theThe CF of the column residence time (i.e. includ-
C term of the Deemter equation since all moving¯ing the moving zone time t ), is obtained by0 zone dispersive effects were neglected. It is [24]:applying the shift properties in the Fourier domain

[38] to Eq. (35): 2s (r, d)tp¯iv t 0 ]]]H 5HS DF (v ; r, d) 5 F (v ; r, d) e (37) Ct t t̄ (r, d)c p p

2Any type of model, meeting the above mentioned s (r, d)nf g k0p
]]]] ]]] ¯hypothesis, of constant moving zone velocity can be 1 v t (r, d) (40)J 2 0 pn̄ (r, d) (k0 1 1)pworked out and the pertinent CF obtained, by simply

specifying both F (v ; r, d) and F (v ; r, d) [38,39].n tp where v is the constant moving zone velocity.0Once F (v ; r, d) is obtained, the statistical momentst From Eqs. (38) and (40), one can see that thec

of the peak profile are calculated from the derivatives ¯chromatographic quantities t and H are affected byp Cevaluated at v 5 0. From these quantities all the size effects both through the ingress process and
¯chromatographic quantities t (i.e. t ), N, H, S, E canc R ¯residence in the pore, i.e. by the quantities n (r, d),pbe computed [24,25]. The shape of the column ¯s (r, d), t (r, d) and s (r, d).n p tp presidence time distribution (i.e. the chromatographic

peak) can be obtained in all cases by numerical
2.6. Monopore GEC modelinversion [26,28,30].

The pore egress time distribution for this model is2.5. Exploitation of general monopore models
exponential:based on constant moving zone velocity

t (r, d)1 pThe general monopore SEC model derived in the ]] ]]f t ; r, d 5 exp 2 (41)f g F Gp ¯ ¯t (r, d) t (r, d)previous section is too general and consequently p p

uninteresting in practice. However, from it, interest-
¯where t (r, d) is the mean time spent by theing features are derived that hold true for all models p

molecule for each visit in the pores. The number ofbelonging to this class. More precisely, the features
ingress steps in pores is Poissonian:singled out in the following will be common not only

to the GEC model for which the ingress process is
n¯ ¯exp 2 n(r, d) 3 n(r, d)f g f gPoissonian and the pore egress process is exponen- ]]]]]]]]P n; r, d 5 (42)f g n!tial, but to any other case with the only constraint

that the ingress and egress processes be independent ¯where n(r, d) is the mean ingress number for the
of each other. The first moment is [24,25]: particular species.
¯ ¯ ¯ It can be proved [25] for this model that the CF is:t 5 n (r, d) t (r, d) (38)p p p
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¯process (through n ) and the egress process (throughp1
¯ ]]]] ¯F v ; r, d 5 exp n (r, d) 2 1 t ), as can be seen from Eq. (9a), the SEC selectivitys d H F GJt p pp ¯1 2 ivt (r, d)p can be understood as arising in part from each of

(43) these processes. Thus one can write:
mp¯ ¯t (r) 5 t (1 2 r) (51)The expression for the stagnant zone residence time p,i p, perm

is, from Eq. (38):
and

¯ ¯ ¯t 5 n (r, d) t (r, d) (44) mp p p e¯ ¯n (r) 5 n (1 2 r) (52)p,i p, perm

and from Eq. (39) the peak variance is:
since, by combining Eqs. (7), (9a), (9c), (51) and

2 2 (52):¯ ¯s 5 2n (r, d) t (r, d) (45)t p pp

m 1me pK 5 1 2 r (53)s dSECsince

and, by comparing with Eq. (50), one has:t̄ (r, d) 5 s (r, d) (46)p tp

m 5 m 1 m (54)e p2n̄ (r, d) 5 s (r, d) (47)p np

Obviously, for r 5 0, the species i becomes the
hold true because the time spent in the pore was totally permeable species, hence the subscript perm
assumed to be exponentially distributed and the appearing in the RHS terms of Eqs. (51) and (52).
ingress process was assumed to be Poissonian. The According to Eqs. (12a) and (12b) (HYP 4), one gets
H term is [35]: from Eq. (52):C

mek0 ¯ ¯n (r) 5 n (1 2 r) (55)0,i 0, perm]]] ¯H 5 2 v t (r, d) (48)C 2 0 p(1 1 k0)
which together with HYP2, and Eqs. (9b) and (9d),

The molecule size selectivity of the SEC process gives:
is reflected by the dependence of K on molecular 2mSEC e¯ ¯t (r) 5 t (1 2 r) (56)0,i 0, permsize r and on pore size d. In various geometrical–
equilibrium models of SEC, K is expressed inSEC The effective number of theoretical plates for this
terms of a unique size parameter r defined as: type of model is obtained from Eqs. (23), (44) and

r (45):
]r 5 (49)d n̄ (r)p,i

]]9N 5 (57)iby the following relation [1,3–6]: 2
m and thus combining Eq. (57) with Eq. (52) one has:K 5 (1 2 r) (50)SEC,i

me9 9N 5 N (1 2 r) (58)in which m is a parameter which depends on pore i perm

shape. Hence, m is equal to 1, 2 or 3, respectively,
wherefor slit shaped pores, cylindrical pores of height

n̄much greater than their diameter, and spherical or p, perm
]]9N 5 (59)permconical pores [5,11]. It is also possible for m to 2

assume noninteger values for more complex pore
is the effective number of theoretical plates for theshapes.
totally permeable species.As mentioned above, the ergodic hypothesis al-

By combining Eqs. (50) and (58), one obtains:lows one to establish the correspondence between the
12akinetic and equilibrium approaches of the SEC 9 9N 5 N K (60)i perm SEC

process. Accordingly, as the total residence time in
where the parameterthe pore space is controlled by both the ingress
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in the quantities n and t since they always refer tom mp p
]]] ]a 5 5 (61) the pore space.m 1 m me p The SEC mechanisms for pores of types A and B

are assumed to be the same with the same values ofexpresses the relative magnitude of the size exclu-
m and m . The expressions for the size effects of thesion effect for the egress process (m ) with respect to e pp
molecule i are:the total size exclusion effect (m). The domain here

mconsidered is: 0 # a # 1. When a 5 1, m is zero, ee ¯ ¯n (r ) 5 n p (1 2 r ) (65a)A,i A perm A A
i.e. there is no size exclusion effect coming from the

mpore ingress and the whole molecular size selectivity e¯ ¯n (r ) 5 n p (1 2 r ) (65b)B,i B perm B B
arises from the inside of the pore. In the opposite

mcase, when a 5 0, the size exclusion determining p¯ ¯t (r ) 5 t (1 2 r ) (66a)A,i A perm Afactor arises solely from the pore ingress process.
mThis last condition corresponds to the original GEC p¯ ¯t (r ) 5 t (1 2 r ) (66b)B,i B perm Bmodel of SEC [17]. In addition to the possibility of

varying a, it must be underlined that the present where:
model can be exploited also for different a ranges r

]r 5 (67a)outside the (0, 1) domain. This however corresponds A dA
to different retention mechanisms, which are not

and:considered in the present study.
The skewness and the excess are: r

]r 5 (67b)B dB3 1
]]]]]S 5 (62)]]]]i 12a2 are the pore size parameters of the molecule i9K NSEC,i permœ

referred to the d and d pore types.A B
3 The pertinent CF corresponding to Eq. (43) is:

]]]]E 5 (63)i 12a 9K NSEC,i perm 1
¯ ]]]]F v ; r , r 5 exp n (r ) 2 1s d H F Gt A B A Ap ¯1 2 ivt (r )2.7. Two-pore GEC model A A

1
¯ ]]]]1 n (r ) 2 1F GJB BThe previous GEC monopore model of SEC can ¯1 2 ivt (r )B B

be extended to include the case of columns with two
(68)types of pores of sizes d and d (d . d ) andA B B A

volume fractions: Note that, for the sake of simplicity, in this model
the pore differences are only accounted for by theVp,A
size parameters r and r , in addition to the total]]]p 5 (64a) A BA V 1Vp,A p,B pore volume fractions, p and p . These simplifiedA B

assumptions are made in order to have a two-poreand
model easy to exploit and to gain an initial insight

p 5 1 2 p (64b)B A into the two-pore effect. Equations for the different
chromatographic quantities obtained under the abovewhere V and V are the total pore volumes ofp,A p,B
referred hypotheses are given.types A and B, respectively. A procedure similar to

For r , d , d one has:A Bthat previously developed and applied to the case of
m mmultiple-site adsorption chromatography [27,28] is K 5 p (1 2 r ) 1 p (1 2 r )SEC,AB A A B Bfollowed here. In Appendix A an extended discus-

5 p K 1 p K (69a)A SEC,A B SEC,Bsion of the two-pore model is presented. A simplified
model is here considered and discussed with the aim For d , r , d :A Bof focusing on the relevant aspects of the problem. In
this section the index p indicating the pore is omitted K 5 p K (69b)SEC,AB B SEC,B
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and for r . d : sion, viscous flow nonuniformities and streamlineB

splitting around packing particles (a process some-K 5 0 (69c)SEC,AB times called anastomosis or eddy diffusion), the time
t spent by a molecule in the moving zone is aThe expression of the effective plate number is 0

random quantity. The contribution to the total bandsimplified if, as assumed by Carmichael [18], the
broadening from this source is not negligible. It wasmean egress times of the permeable species in pores
reported that it can contribute up to 50% of the totalA and B are equal (see Appendix A). In this instance,
band dispersion [1] and this must be accounted for.for r , d , d , one gets:A B

The problem of non-constant moving zone velocity
a 11K9N was solved by the CF [25]. This last method isAB,SECAB

]] ]]]]]]]]]]5 m(a 11) m(a 11) followed here.9N p (1 2 r ) 1 p (1 2 r )H A A B B
The distribution of residence time t in the moving0a 11KAB,SEC zone is assumed to be Gaussian [28]:

]]]]]]5 (70a)a 11 a 11p K 1 p KA SEC,A B SEC,B 2¯(t 2 t )1 0 0
]] ]]]f(t ) 5 exp 2 (73)9where N is the efficiency of a homogeneous ] F G0 2H Œs 2p 2s0 0column which would provide the same K valueSEC

for species i, and the same effective plate number for ¯where t and s are the mean and the standard0 0a permeable species, as does the two-pore column. deviation, respectively. For the sake of simplicity s0For d , r , d , one gets:A B is derived from the hypothetical expression of the
9N number of theoretical plates for a species visitingAB 12a]] 5 p (70b)B only the moving zone:9N H

2t̄The skewness for r , d , d is: 0A B
]N 5 (74)S D0 s0m12m m12mp pp (1 2 r ) 1 p (1 2 r )3 A A B B

]]]]]]]]]]]]]]S 5 ]] m1m m1m 2 / 3p p The handling of nonconstant moving zone velocity in94N p (1 2 r ) 1 p (1 2 r )f gperm A A B Bœ
stochastic modelling of chromatography was dis-

(71) cussed in Ref. [23] and it was recently applied by
some of the present authors to develop the stochasticA corresponding expression is obtained for d , r ,A
dispersive model of adsorption chromatography [28].d by noting that in this instance K 5 0.B SEC,A
A similar approach is here followed and the detailsIn order to exploit the two-pore GEC model, the
are reported in Appendix B.following average size parameter will be employed:

The resulting CF of the total residence time in the
r

column, including the moving zone dispersive effect]]]]r9 5 (72a)p d 1 p dA A B B is:
or: 1

¯¯ ]]]]F (v) 5 exp n (r) 2 1 1 ivtH F Gt p 0p p1 c ¯A B 1 2 ivt (r)p] ] ]5 1 (72b)
r9 r rA B 21 1

¯] ¯ ]]]]1 n (r) 2 1 1 ivtS F G D Jp 0r9 is equal to r when d 5 d (see Eq. (49)). ¯2N 1 2 ivt (r)A B 0 p

(75)2.8. Stochastic dispersive models of SEC

Peak moments are obtained by differentiation [25]:
When the molecule is in the moving zone of a real

¯ ¯SEC column, it does not travel with a constant ¯ ¯t 5 n (r) 3 t (r) 1 t (76)c p p 0
velocity as previously assumed. Indeed, because of
various physical processes, such as molecular diffu- and
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2t̄ c2 2¯ ¯ ]s (r) 5 2n (r) 3 t (r) 1 (77)t p pc N0

Eq. (75) represents the solution for the monopore
GEC model of SEC including the dispersive effect.
By following the same approach, a two-pore model
or multiple-pore model including the dispersion
effect can be derived. Exploiting such complex cases
lies beyond the aim of the present work.

3. Discussion

3.1. Monopore model Fig. 2. K values vs. average size parameter value, r9. Com-SEC

parison of monopore models at different m values with multiple-
2rpore models, e [3,11].By using the CF approach and by assuming simple

expressions for the size exclusion effects (see Eqs.
(51) and (52)) the GEC model of SEC has been fully
developed (see Eqs. (44)–(49), (53), (57)–(63)). size parameter r9 for different selected values of m.
The general power law form of the size effects The main effect of parameter m is on selectivity
employed here is based on the geometrical–equilib- dK /dr : it is constant through the whole sizeu uSEC

rium concept of SEC [3,9,11] making the com- range for m51, but decreases with increasing
parison of the results straightforward. With respect to species size for m . 1. On the same figure we
the original treatment of Carmichael, a size effect compare the present monopore model (for which
was allowed for both the ingress and egress pro- K becomes zero at r9 5 1) with other expressionsSEC

cesses. Importantly, one notes that the factor 2 obtained for nonconstant pore size [1,3]. Another
appearing in several variance, plate height and plate interesting aspect to underline is that K for theSEC

number expressions (see Eqs. (45), (48) and (57)) stochastic model is the same as that in the geomet-
was missing in the Carmichael results [17]. This ric–equilibrium model [11]. This is not surprising
factor 2 is, on the other hand, correctly reported by and it can be understood under the light of the above
Casassa and Tagami [10,13]. It is, in fact, the result discussion on the key role of the ergodic hypothesis
of two independent band broadening processes, one and of the expressions employed for the size effects.
coming from the ingress process and the other from Fig. 3 demonstrates the dependence of the effec-
the egress process. When the former follows a tive number of theoretical plates on K on chang-SEC

Poisson distribution and the latter an exponential one ing parameter a. Only positive values of this param-
(as in the Giddings–Eyring model), each contributes eter are considered because this assumption corre-
a value of unity for the two terms in brackets in Eq. sponds to a pure exclusion mechanism. We can see
(40) and their sum is 2 [24]. that the higher the parameter a, the greater is the

The main result is given by Eqs. (53) and (54) column efficiency. Practically, if the total size exclu-
where it is shown that retention is affected by both sion effect is dominated by the egress process, i.e. by
the ingress and egress processes through parameter the sizing effect inside the pore (a 5 1), separation is
m, whereas efficiency is only affected by the ingress performed over the whole K domain with mini-SEC

process through parameter m (see Eq. (58)). Eq. mum loss of efficiency, under the condition of r , 1.e

(60) establishes the link between retention and Thus when the pore ingress process contributes to
efficiency through the critical parameter a, measur- the size separation effect, this is accompanied by an
ing the relative relevance of the size effect inside the efficiency loss and should be avoided if possible.
pore with respect to the total size effect (see Eq. Series of chromatograms calculated with the
(61)). Fig. 2 reports the dependence of K on the mono-pore model are presented in Figs. 4 and 5,SEC
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Fig. 3. Monopore model: dependence of efficiency vs. K forSEC Fig. 5. Monopore model: theoretical chromatograms for different
different a values. K values for a 5 0.8.SEC

where the above mentioned effects can be detected. molecules that do not enter a pore is proportional to
22N 9iFig. 4 corresponds to the case of a 5 0 where the e (see Refs. [27,28]).

rate of efficiency loss with decreasing K is A comparison of Figs. 4 and 5 shows the effect ofSEC

constant (see Fig. 3). One can see in the insert of increasing a on column efficiency. It can be seen
Fig. 4 that, near the exclusion limit, the peak shape that a significant improvement is achieved especially
becomes tailing and that peak splitting occurs just at for slightly retained species when a is increased
the origin. Peak tailing is characterized by the from 0 to 0.8. Fig. 6 illustrates the dramatic effect of
skewness as expressed by Eq. (62), which also the change in a on the peak shape, for a constant
predicts significant tailing when K is close to K , near the exclusion limit. Peak splitting dis-SEC SEC

zero. The peak splitting effect is due to the fact that appears and the peak becomes narrower higher and
some molecules leave the column without ever more symmetrical when a is increased. All these
entering a pore. This happens when K is very findings are particularly relevant for calibrationSEC

small. It was shown that the relative amount of (where usually the peak maximum rather than the

Fig. 4. Monopore model: theoretical chromatograms for different Fig. 6. Monopore model: effect of a change near to exclusion
K values for a 5 0. limit.SEC
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9 9first moment is used) and in establishing a proper instance, values of both N and N will bei perm

deconvolution method for determining the molecular affected in the same way (see Eqs. (57) and (59)).
9 9mass distribution. One can see that it should be However, the ratio N /N (see Eq. (60)) will noti perm

relevant to know for the different columns, not only be affected and Fig. 3 is thus valid for any general
9the calibration plot of log M vs. K , but also N monopore model. If, on the contrary, the terms inSEC i

and the skewness vs. K . brackets in Eq. (40) are size dependent, these effectsSEC

All the chromatograms reported in Figs. 4–6 as will appear in the column efficiency expressions.
well as the other chromatograms presented in the However it is a difficult task to derive the pertinent
following are obtained by numerical inversion of the expressions by following the procedure presented
CF [30]. Chromatograms of Figs. 4–6 corresponding here. Still, exploration of the simple GEC model will
to the GEC model could be also obtained by using facilitate the understanding of these additional ef-
the well known expression based on the Bessel fects. Likewise the peak shape can be obtained by
Function [14]. This would require in any case special numerical inversion of Eq. (43) under the sole
software to compute it. Numerical inversion now condition that the ingress and egress CF expression
available from many mathematical packages is gen- be known in closed form.
eral for any CF expression and is thus the standard
method for building peak shape. 3.2. Two-pore model

Development of the GEC model is relatively easy
and provides many useful insights. Now the question SEC packings with bimodal pore size distributions
is how general these results are and how dependent have been proposed for their expanded calibration
they are on model hypotheses on the distributions of range and optimum performances in characterizing
the egress time and on the number of entries. It is polydisperse polymer samples [40]. A full inves-
thus necessary to make a comparison between this tigation of peak shape features by the CF approach is
model and any other general monopore model. If the thus of practical relevance.
same size parameter dependence is assumed for the For the two-pore model, Figs. 7 and 8 illustrate the
ingress and egress pore processes, K will not be dependence of K on the average size parameter r9SEC SEC

affected, because this quantity, for both the general with m 5 1 and m 5 3, respectively. For small
model and the GEC model, derives from the same species, for which r , d , d , both pores are effec-A B

Eq. (38). A difference will instead appear in the tive (this corresponds to the interval before the break
efficiency (as well as in any higher-order peak shape points in Fig. 7). In this domain the absolute value of
parameter like S and E) if pore ingress and egress the slope is greater than for larger species that can
processes are different from the Poisson and ex-
ponential one, respectively. It must be observed that
these hypotheses make the factors inside the brackets
of Eq. (40) both equal to unity and their sum equal
to 2 (see Eq. (48)), because of equalities (46) and
(47). This factor appears also in Eqs. (57) and (59).
Consequently a deviation from unity in either of the
two terms inside the brackets will cause a difference
between the GEC model and any other.

Let us first assume that the ratios inside the
brackets of Eq. (40) are both different from unity
and independent of size parameter. In this case, the
values of each of these two terms are likely to be
greater than unity since it is hard to imagine a pore
ingress process less dispersed than the Poisson one
or an egress process more regular than first order Fig. 7. Two-pore model. K values vs. average size parameterSEC

kinetics, corresponding to the exponential. In this value, r9, for m51.
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Fig. 8. Two-pore model. K values vs. average size parameter Fig. 9. Two-pore model: dependence of efficiency on r forSEC

value, r9, for m53. a 5 0.9.

enter only the wider pores. When r is unity (r 5 d ), small pores and the mechanism becomes a single-A A

there is no discontinuity in the slopes of the curves, pore one governed by the wide pores. This region is
except for m 5 1. In this case the plots are bilinear described by Eq. (70b). In addition to the influence
(see Fig. 7) with a sharp slope change when r 5 1. of the relative amount of narrow pores, we canA

This can be understood with reference to Eq. (69a) observe, by comparing Figs. 9 and 10, that the
and (69b) which then show a linear dependence of relative loss of efficiency is more significant when a

K on r and r and consequently on r9. The is larger. However, it must be kept in mind that Figs.SEC A B

selectivity properties of the system are thus strongly 9 and 10 illustrate the relative effect of the two-pore
affected by the pore heterogeneity, as one can see by column with respect to the monopore case. If one
comparing the main part and the insert in both Figs. refers to Fig. 3, one can see that the efficiency of a
7 and 8 where two different pore size ratios are monopore column increases with increasing a, what-
considered. The effective number of theoretical ever the value of K , the effect being larger forSEC

plates can be calculated with Eq. (70) for the two- larger species (lower K values). This tempers theSEC

pore model. One of the consequences of pore size influence of a on the efficiency loss noted above for
heterogeneity is that efficiency is reduced compared
to the monopore model when cases for the same size
factor r are considered.

Figs. 9 and 10 report the efficiency of the two-
pore column relative to that of a homogeneous
monopore column providing the same K value forSEC

the species i and the same plate number for the
permeable species, for a 50.9 and a 50.1, respec-
tively. As the size of the species increases fewer
pores are penetrated, therefore the column efficiency
is reduced. This explains the drop of efficiency at the
beginning of the plots. The magnitude of the drop is
obviously increased when the proportion of the
narrow pores increases. The plateau before the drop
corresponds to a single-pore dominated mechanism
(due to the small pores) whereas, on the plateau after Fig. 10. Two-pore model: dependence of efficiency on r for
the transition, species are totally excluded from the a 5 0.1.
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the two-pore column. In fact, it can be shown that,
9keeping constant the values of K and NSEC,i perm

values for the two individual pore types (A and B),
the plate number of a species i in the two-pore
column increases with increasing a, i.e. by increas-
ing the relative contribution of the egress process to
the size selectivity in SEC (see Eq. (A.23) of
Appendix A).

For large species both selectivity and efficiency
are small, therefore a two-pore separation media will
not be useful. This is illustrated in Fig. 11 where the
peak splitting effect is distinct. If one compares Figs.
11 and 6, the adverse effect of pore size hetero-
geneity on species near the exclusion limit can be

Fig. 12. Two-pore model. Theoretical chromatograms illustrating
evaluated. One can see that in the homogeneous case the peak splitting. The total peak in the two-pore column (full
peak splitting completely disappears at K 5 0.01 line) is the convolution of two peaks (dashed lines) from separateSEC

and a $ 0.2, whereas peak splitting persists in a monopore columns. a 5 0.75.

two-pore system even at a 5 1 for similar KSEC

values. Homogeneous packings are thus recom-
mended when working near the exclusion limit. visiting the stagnant zone. In the former case peak

In Fig. 12, the mechanism generating such a splitting appears as a memory effect. The ripples in
splitting effect is detailed. The broken lines show the Figs. 11 and 12 are the results of the numerical
hypothetical peak shapes one would obtain on inverse Fourier transform. Smoothing over the nu-
homogeneous columns made of either pores A or merically computed band profiles was not applied in
pores B. The solid line is the peak observed with a order to avoid altering the spikes that appear because
two-pore system. The resulting peak shape is the of the peak splitting effect.
convolution of the two former peak shapes. It must Up to now hypothetical columns with two unique
be underlined that in a two-pore column a specific and distinct pore sizes have been considered. Real
peak-splitting effect appears, different from that columns present, instead, continuous bimodal dis-
observed in a homogeneous column. In the latter tributions of the pore dimensions [40]. This problem
case peak splitting is related to those molecules not can be fully handled by the CF approach, as shown

elsewhere in the case of the adsorption chromatog-
raphy [27]; however exhaustive treatment of this
problem lies beyond the aims of the present study.

3.3. Stochastic-dispersive model

Eq. (75) is the CF of the peak profile of a GEC
type model of SEC including the effect of non-
constant moving zone velocity. The dispersion of the
time t spent in the moving zone leads to a rather0

complex function which cannot be represented as a
simple convolution of the distribution function of t0

and t , as postulated by Carmichael [41]. Somep

molecules of a given species stay for a longer time in
the moving zone, thus having the chance of perform-
ing a greater number of pore ingresses. As we canFig. 11. Two-pore model. Theoretical chromatograms of large

species illustrating the peak splitting effect at p 5 0.99. see from Eq. (76), the dispersion has no influence onA
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retention time but Eq. (77) shows that the variance is decreases). It must be underlined that, in spite of the
the sum of the variance contributions of the kinetic complexity of the CF expression (see Eq. (75)),
component and the moving-zone dispersion. In Ref. obtaining the peak shape by numerical inversion is as
[26], a general discussion of the stochastic-dispersive straightforward as in other more simple cases.
model of chromatography can be found. In order to
apply Eq. (75) to the SEC case, an assumption about
the N value appearing in the various expressions0

must be made. According to Giddings [21], the N 4. Conclusion0

expression is:
Monopore and two-pore GEC models, including

d1 2g 1part the dispersive effect, are successfully solved by] ]] ] ]]]5 1 (78)N L v 1 1 means of the CF. The main question is the physical0 0 ] ]]11 2a Cv foundation of the model. Comments about the Pois-0

son character of the pore ingress process appear
where a and C are constants, d is the packingpart under the Theory section. The most important ques-
particle diameter, g the obstructive factor and v the0 tions are about the exponential character of the
reduced velocity: egress time distribution and about the dependence of

¯ ¯the mean egress times t or t on size parame-Ld p,i p, permpart
]]v 5 (79) ter r. One must keep in mind that the pore egress by0 t̄ D0 0 the analyte molecules is governed by their Brownian

movement and thus one must refer to this for in-where D is the diffusion coefficient of the analyte in0

depth information. The references in this field are sothe carrier liquid. It should be noted that Eq. (78)
abundant that it is hard to grasp a synthetic overviewaccounts for the contributions of both axial diffusion
[42]. However there is agreement that the poreand eddy diffusion (also called hydrodynamic disper-
residence time distribution shows tailed forms, simi-sion) to the moving zone dispersion. The influence of
lar to the exponential one (see the case of Ref. [37],this dispersion on peak shape is specially significant
Vol. 1, page 368). Thus, choosing such a hypothesisin the case of low efficiencies and asymmetric peaks,
as the first one to analyze seems logical. To exploitas shown in Fig. 13: the peak due to peak splitting

¯ different pore ingress and egress kinetics requires aaround t becomes more and more diffuse as the0

separate handling. It is worthwhile to observe thatrelative contribution of the moving zone to the
Brownian processes are very often represented inoverall band broadening increases (i.e. as N /N90

either the Laplace or Fourier domain and thus that
they can be directly integrated in the present CF
approach.

In this study the major aspects of SEC have been
considered. Several other size effects producing
separations [3,4,12] are left out. However they can
be handled within the stochastic description pre-
sented here by following the same procedure, either
in extending the monopore model to the two-pore
model or in handling the moving zone dispersive
effect. Moreover, still other aspects are left out, such
as the intraparticle diffusion giving rise to a H termC

2 ¯contribution of type Cd v /D where D is thepart 0 p p

stagnant-phase diffusion coefficient of the species.
This term is dependent on the support structure and it
can be equally well handled by the CF approachFig. 13. Stochastic-dispersive two-pore model: theoretical chro-

matograms illustrating the influence of N over peak splitting. [28].0



943 (2002) 185–207202 F. Dondi et al. / J. Chromatogr. A

5. Nomenclature Subscripts
A A pore

a constant AB A 1 B pores
C constant B B pore
c concentration 0 moving zone
CF characteristic function C C term of the van Deemter Equation
d pore size c quantity referred to the whole column
d support particle diameter (stagnant and moving zones)part

D diffusion coefficient of the species in the excl totally excluded species0

carrier liquid H homogeneous column
D diffusion coefficient of the species in the i species iP

stagnant zone p stagnant zone
E excess part packing particle
f() frequency function perm totally permeable species
GEC Giddings–Eyring–Carmichael (model) R retention quantity
H plate height
i imaginary unit Greek letters
k0 zone capacity ratio a size factor ratio
K distribution coefficient in SEC b phase domainSEC

l length g obstructive factor
L column length k cumulant of order ii
m size factor exponent for the egress pro- r size factorp

cess r9 average size factor
m size factor exponent for the ingress s peak standard deviatione t

process t ingress time0
m total size factor exponent t pore egress timep
n number of steps v auxiliary variable (frequency)
N number of species F characteristic function
N number of theoretical plates
N9 effective number of theoretical plates
p total pore volume fraction
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u condition

Superscripts Appendix A. Two-pore model of SEC
– mean quantity
eq equilibrium quantity One considers a column made of two kinds of
* convolution pores A and B, of sizes d and d . The volumes ofA B
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the moving zone and of the stagnant zone in pores A in the stagnant zones by species i and perm, respec-
and B are V , V and V , respectively. According to tively, one gets:0 p,A p,B

the ergodic hypothesis applied to a permeable
¯ ¯t 1 tp,A,i p,B,ispecies perm which can access the whole mobile

]]]]]K 5 (A.8)SEC,AB,i ¯ ¯t 1 tphase volume, both in the moving zone and in the p,A, perm p,B, perm

stagnant zone, one has:
By combining Eqs. (A.6)–(A.8), one gets:

eq eq ¯N 5 c V ~t (A.1)0, perm 0, perm 0 0, perm K 5 p K 1 p K (A.9)SEC,AB,i A SEC,A,i B SEC,B,i

eq eq ¯ withN 5 c V ~t (A.2)p,A, perm p,A, perm p,A p,A, perm

t̄p,A, permeq eq ¯ ]]]]]p 5 (A.10)N 5 c V ~t (A.3) Ap,B, perm p,B, perm p,B p,B, perm ¯ ¯t 1 tp,A, perm p,B, perm

where the subscripts 0; p, A; and p, B; refer to the and
moving zone, the stagnant zone of pores A, and the

eq eq p 5 1 2 p (A.11)B Astagnant zone of pores B, respectively. N , c ,perm perm
¯and t are the mean number of molecules of theperm Using Eq (A.4) to account for the ergodic hypoth-

permeable species at equilibrium, the equilibrium esis, the weighting factor p can be expressed inAmolar concentration of this species, and the mean terms of the pore volumes as:
time spent by this species in a zone, respectively.

VSince at equilibrium the molar concentrations of a p,A
]]]p 5 (A.12)Apermeable species in the various zones are equal, one V 1Vp,A p,B

obtains from Eqs. (A.1)–(A.3):
The mean time spent by species i in one stagnant

¯ ¯ ¯t t t zone of a given type (A or B) is expressed in terms0, perm p,A, perm p,B, perm
]] ]]] ]]]5 5 (A.4) ¯of its mean number of pore egresses, n , and of itsV V V p,i0 p,A p,B

¯mean egress time, t :p,i

The K values, K and K , of species i inSEC SEC,A,i SEC,B,i ¯ ¯ ¯t 5 n t (A.13)p,i p,i p,ihomogeneous columns of pores A and B, are defined
by (see Eq. (7)): As in the monopore case, one assumes that these

quantities are related to the corresponding ones for
t̄p,A,i the permeable species by similar relationships (see]]]K 5 (A.5)SEC,A,i t̄ Eqs. (51) and (52)). By employing Eqs. (50)–(52)p,A, perm

and (61) one gets:
and

me¯ ¯n 5 n 1 2 rs dp,A,i p,A, perm A
t̄p,B,i 12a]]] ¯K 5 (A.6) 5 n K (A.14)SEC,B,i p,A, perm SEC,A,it̄p,B, perm

me¯ ¯n 5 n 1 2 rs d¯ ¯ p,B,i p,B, perm Bwhere t and t are the mean times spent byp,A,i p,B,i
12aspecies i in stagnant zones A and B, respectively. ¯5 n K (A.15)p,B, perm SEC,i,B

Defining the apparent K value of species i inSEC

amthe mixed column containing pores A and B, p¯ ¯ ¯t 5 t 1 2 r 5 t K (A.16)s dp,A,i p,A, perm A p,A, perm SEC,A,i
K , as:SEC,AB,i

amp¯ ¯ ¯t 5 t 1 2 r 5 t K (A.17)s dp,B,i p,B, perm B p,B, perm SEC,B,it̄p,AB,i
]]]K 5 (A.7)SEC,AB,i ¯ where r and r are the ratios of molecular size tot A Bp,AB, perm

sizes of pores A and B, respectively. a, defined by
¯ ¯where t and t are the mean times spent Eq. (61) reflects the relative contribution of thep,AB,i p,AB, perm
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egress process to the size selectivity and is assumed Of course, when the two kinds of pores become
to be the same for pores A and B since the SEC identical ( p 5 0, p 5 1), one retrieves the expres-B A

mechanism is assumed to be the same for these two sion for the mono-pore case:
kinds of pores.

12a9 9N 5 N K (A.24)The variance arising from the stagnant zones is: i perm SEC,i

2 2 2
s 5 s 1 s as found in Eq. (60).p,AB,i p,A,i p,B,i

2 2 Writing K 5 K 5 1 in Eq. (A.23), oneSEC,A,i SEC,B,i¯ ¯ ¯ ¯5 2 n t 1 n t (A.18)s dp,A,i p,A,i p,B,i p,B,i obtains the effective plate number for the permeable
species:The effective plate number for species i is defined

as:
1

2 ]]]]]9N 5 (A.25)2 AB, perm 2 2¯ ¯ ¯ ¯ ¯t n t 1 n ts dp,AB p,A,i p,A,i p,B,i p,B,i p pA B]] ]]]]]]]9N 5 5 (A.19) ]] ]]1AB,i 2 2 2¯ ¯ ¯ ¯ 9 9s 2 n t 1 n t N Ns di, p,AB p,A,i i, p,A p,B,i p,B,i A, perm B, perm

Combining this expression with Eqs. (A.3), (A.10), When the pores A and B are identical, the ratio of the
(A.11)–(A.18), one gets: pore volume fractions, p and p becomes equal toA B

the ratio of the lengths of columns A and B con-m m 2p 1 2 r 1 p 1 2 rf s d s d gA A B B nected in series, and, hence to the ratio of their]]]]]]]]]]]]9N 5AB,i 2 2p p effective plate numbers for a given species:A Bm m]]] ]]]2 1 2 r 1 1 2 rs d s dF GA B¯ ¯n np,A, perm p,B, perm

9Np A, permA(A.20a) ]] ]]5 (pores A 5 pores B) (A.26)
91 2 p NA B, perm

or
It can then be verified, by combining Eqs. (A.25) and2p K 1 p Ks dA SEC,A,i B SEC,B,i (A.26), that:]]]]]]]]]]]]9N 5AB,i 2 2p pA B11a 11a]]] ]]]2 K 1 KS DSEC,A,i SEC,B,i 9N¯ ¯ A, permn np,A, perm p,B, perm ]]9N 5AB, perm pA(A.20b)

9 95 N 1 N (pores A 5 pores B)A, perm B, permWriting
(A.27)

n̄p,A, perm
]]]9N 5 (A.21)A, perm 2 as one expects for columns packed with a given

material and connected in series.n̄p,B, perm One can consider a homogeneous column which]]]9N 5 (A.22)B, perm 2 would provide the same K value for species i,SEC

given by Eq. (A.9), and the same effective platethis gives:
number for a permeable species, given by Eq.

2p K 1 p Ks dA SEC,A,i B SEC,B,i (A.25), as does the two-pore column. By combining]]]]]]]]]]9N 5 (A.23)AB,i 2 2 Eqs. (A.24) and (A.25), the effective plate numberp pA B11a 11a]] ]]K 1 KSEC,A,i SEC,B,i 9for species i in the homogeneous column, N is9 9N N H,iA, perm B, perm
given by:

One notes that, since the AB column is equivalent to
12a9the A and B columns connected in series, N KA, perm SEC,AB,i

]]]]]9N 5 (A.28)9and N are the effective plate numbers of the H,i 2 2B, perm p pA Bperm species in each of these individual columns, ]] ]]1
9 9N NA, perm B, permrespectively.



943 (2002) 185–207 205F. Dondi et al. / J. Chromatogr. A

and, with Eq. (A.23), one gets: Then, the effective plate number ratio can be ex-
pressed as:

2 2p pA B11a 11a 11a]] ]]K 1 K 9N KSEC,AB,i SEC,AB,i AB,i SEC,AB,i9 9 9N N NAB,i A, perm B, perm ]] ]]]]]]]5 11a 11a]] ]]]]]]]]]]]5 9N2 2 p K 1 p KH,i9N A SEC,A,i B SEC,B,ip pH,i A B11a 11a]] ]]K 1 KSEC,A,i SEC,B,i9 9N N (constant perm egress time) (A.32)A, perm B, perm

(A.29a)
This is Eq. (70a) of the main text.

or

9N AB,i
]] 5 Appendix B. Stochastic-dispersive models of9N H,i SEC

2 2p pA B 11a]] ]]1 p K 1 p KS Ds dA SEC,A,i B SEC,B,i The distribution of residence time in the moving9 9N NA, perm B, perm
]]]]]]]]]]]]] zone, t is assumed to be Gaussian:2 2 0p pA B11a 11a]] ]]K 1 KSEC,A,i SEC,B,i 29 9N N ¯perm,A perm,B (t 2 t )1 0 0

]] ]]]f(t ) 5 exp 2 (B.1)] F G0 2Œs 2p 2s(A.29b) 0 0

¯This equation is quite general for a GEC two-pore where t and s are the mean and the standard0 0
model. It shows that the ratio of the effective plate deviation, respectively. For the sake of simplicity s0
number for the two-pore column to that for the is derived from the hypothetical expression of the
monopore column depends on the individual K number of theoretical plates for a species visitingSEC

values and on the pore volume fractions, and also on only the moving zone:
the ratio of the effective plate numbers of the

2t̄permeable species for the two individual parts of the 0
]N 5 (B.2)S D0two-pore column. If further assumptions are made, s0

the above expression can be simplified. For instance,
if the mean egress times of the permeable species in It can be proved that the CF for the total residence

¯ ¯pores A and B are equal (t 5 t ), as time in the column (including thus the moving zonep,A, perm p,B, perm

assumed by Carmichael, then, from (A.21) and time) has the following general expression [21]:
(A.22), one has:

ln F (v)f grH]]]JF v 5 F (B.3)s d¯9 t MN n cB, perm p,B, perm i
]] ]]]5 ¯9N nA, perm p,A, perm

where F is the characteristic function of the timeM
t̄p,B, perm spent in the moving zone and F is the CF of ther]]]5 (constant perm egress time)¯ residence time in the column on the t normalizedt 0p,A, perm

time scale, i.e. of the variable t /t . The solution ofc 0(A.30) the dispersive model for the GEC case can be
obtained under the hypothesis that there is a unique

According to the ergodic hypothesis and Eqs. (A.4), ¯value of average time t spent in the moving zone0(A.11) and (A.12), this becomes: between an egress step and the subsequent ingress
step.

9N pB, perm B By applying CF shift and scaling transformations]] ]5 (constant perm egress time) (A.31)
9N pA, perm A [33,34], one has for the GEC monopore model:
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[5] R. Tijssen, J. Bos, in: F. Dondi, G. Guiochon (Eds.),n̄ (r ; t ) 1p 0 Theoretical Advancement in Chromatography and Related]]] ]]]]F v ; r 5exp 21 1ivs d H JF Gr ¯t 12ivt (r) Separation Techniques, NATO ASI Series C, Vol. 383,0 p
Kluwer Academic, Dordrecht, 1992, p. 397.

(B.4) ¨[6] G. Glockner, in: Journal of Chromatography Library,Vol. 34,
Elsevier, Amsterdam, 1987.

¯where n (r ; t ) is the average number of egress steps [7] M. Potschka, in: M. Potschka, P.L. Dubin (Eds.), ACSp 0

Symposium Series, Vol. 635, ACS, Washington, 1995.for a given t value. This quantity depends on t , but,0 0
[8] J.C. Giddings, in: Unified Separation Science, Wiley, Newtaking into account Eqs. (9b) and (12a), its ratio with

York, 1991.respect to t can be assumed to be constant and equal0 [9] E.F. Casassa, J. Polym. Sci. Part B 5 (1967) 773.
¯to 1 /t :0 [10] E.F. Casassa, Y. Tagami, Macromolecules 2 (1969) 14.

[11] J.C. Giddings, E. Kucera, C.P. Russell, M.N. Myers, J. Phys.
1 1 Chem. 72 (1968) 4397.] ]]]]F v ; r 5 exp 2 1 1 ivs d H F G Jr ¯ ¯t 1 2 ivt (r) [12] E.F. Casassa, J. Phys. Chem. 75 (1971) 3929.0 p

[13] E.F. Casassa, Sep. Sci. 6 (1971) 305.
(B.5) [14] J.C. Giddings, H. Eyring, J. Phys. Chem. 59 (1955) 416.

[15] J.C. Giddings, J. Chem. Phys. 25 (1957) 169.
The CF of Eq. (B.1) is [34]: [16] D.A. McQuarrie, J. Chem. Phys. 38 (1963) 437.

[17] J.B. Carmichael, J. Polym. Sci. Part A-2 6 (1968) 517.
2 2¯ [18] J.B. Carmichael, Macromolecules 1 (1968) 526.v t 0¯ ]]F v 5 exp ivt 2 (B.6)s d F G [19] J.B. Carmichael, Polym. Prep. 9 (1969) 572.M 0 2N0 [20] J.B. Carmichael, Biopolymers 6 (1968) 1497.

[21] J.C. Giddings, in: Dynamics of Chromatography, M. Dekker,
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obtains the CF of the column residence time dis- [22] G.H. Weiss, Sep. Sci. 5 (1970) 51.

[23] G.H. Weiss, Sep. Sci. Techn. 7 (1982–1983) 1609.tribution (i.e. the peak shape), including the disper-
[24] F. Dondi, M. Remelli, J. Phys. Chem. 90 (1986) 1885.sive effect:
[25] F. Dondi, G. Blo, M. Remelli, P. Reschiglian, in: F. Dondi,

G. Guiochon (Eds.), Theoretical Advancement in Chroma-1
¯¯ ]]]]F (v ; r) 5 exp n (r) 2 1 1 ivt tography and Related Separation Techniques, NATO ASIH F Gt p 0c ¯1 2 ivt (r)p Series C, Vol. 383, Kluwer Academic, Dordrecht, 1992, p.

2 173.1 1
¯] ¯ ]]]]1 n (r) 21 1ivt [26] A. Cavazzini, M. Remelli, F. Dondi, J. Micro. Sep. 9 (1997)S F G D Jp 0¯2N 12ivt (r)0 p 295.
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