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Abstract

A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore
ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between
stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamenta role of the ‘ergodic’
hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function
method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are
obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models.
Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity
and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to
the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on
retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The
relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to
account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.
0 2002 Elsevier Science BV. All rights reserved.

Keywords: Stochastic theory; Size-exclusion chromatography; Pore size distribution; Retention mechanisms

1. Introduction

Size exclusion chromatography (SEC) is the most
widespread technique for polymer molecular mass
determination [1]. As is well known, this determi-
nation relies on a calibration step based on the
retention of well-characterized monodispersed sam-
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ples [2]. Because of the limited resolution and peak
capacity of SEC, the use of peak deconvolution
procedures able to correctly account for the peak
shape features is equally important for the precision.
These procedures are all based on some theoretical
assumptions about the peak shape of individual
macromolecular components of the sample and thus
any advance in theoretical modelling of these aspects
will introduce a benefit for a good SEC practice.
Most theoretical investigations of SEC (see the
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reviews of Refs. [1,3-5]) have been intended to
throw light on the dependence between retention and
dimensions and shape of the separated species.
Various possible retention mechanisms were iden-
tified [3-6] such as hydrodynamically and stress-
induced diffusion, the polarization effect, multipath,
enthalpic and soft body interactions [7]. However the
size exclusion effect of macromolecules within the
stagnant zone entrapped in the porous or gel column
packing material is today recognized as the most
important one [8]. In this instance, separation is
accounted for by a pure entropic mechanism, i.e. by
the relative loss of the number of configurations, or
accessible volume, of a partitioning species in the
stagnant zone [9-11]. These size exclusion models
are also called ‘equilibrium’ or ‘thermodynamic’
models since they correctly account for the differen-
tial partition both in static experiments and in
dynamical chromatographic separations [3,12,13].
None of these models, however, gives insight into
peak shape and peak broadening in SEC.

The stochastic theory of chromatography, origi-
nally conceived by Giddings and Eyring in 1955
[14], further elaborated by Giddings [15] and by
McQuarrie [16] to account for adsorption chromatog-
raphy, was recast by Carmichael to represent SEC
processes [17-20]. In fact the stochastic theory of
chromatography, by representing the migration of a
molecule along the chromatographic bed as a random
chain of ingress—egress steps on identical binding
sites of the stationary phase is completely indepen-
dent of the specific physicochemical mechanism
responsible for retention and can represent all types
of chromatography. As remarked by Casassa in the
case of SEC [13], ‘all we then have to do is to
replace the word ‘adsorption’ by the phrase ‘entrap-
ment in micropores and recognize that in SEC,
unlike adsorption chromatography, the solvent —
consisting of small molecules and, therefore, most
easily trapped in voids — is retarded in the column
relative to macromolecular solutes'. The superiority
of the stochastic theory with respect to other theories
lies in its ability both to account for the dynamical
character of the chromatographic process and to
determine the exact peak shape, i.e. it is at the same
time able to explain and represent the chromato-
graphic process. Carmichael, however, did not
achieve complete success in mastering the complexi-

ty of SEC. In fact, his treatment of the effect of
packing pore size distribution [18] was new and
mainly intuitive, but not completely rigorous since
he considered only the mean residence time depen-
dence in pores. Moreover the hypothesis that macro-
molecules of different sizes spend the same time
within pores is limiting, if not unacceptable.

The partia failure of Carmichael’s work on SEC
was dependent on the fact that he only trandlated the
origina mathematical handling of Giddings and
Eyring into the SEC context without making further
advances in handling the complexity of the SEC
process. This can be understood and explained with
just the following thoughts of Giddings, the father of
the stochastic theory: ‘one aspect of the stochastic
theory which has been pursued from the beginning is
the effect of a nonuniform surface with different
kinds of adsorption sites. The mathematics rapidly
becomes intractable, however, as we pass from the
sheltered simplicity of one site theory’ [21]. Thus the
limit was not in the stochastic approach, but in the
mathematical tools employed at that time.

Several important contributions to stochastic
theory of chromatography appeared after the original
Carmichael’s work on SEC. Most important were the
Weiss contributions [22,23] accounting for mobile
phase dispersion and column heterogeneity. However
this advancement leads to complex mathematics and
was not systematically applied to study the many
open points in chromatography, including the SEC
problem. Moreover the determination of the exact
peak shape has not been solved. With the intro-
duction of the characteristic function (CF) method in
stochastic theory of chromatography, the mathemati-
cal intractability was completely overcome [24,25].
For example, the problem of stationary phase hetero-
geneity proves to be fully tractable [26,27]; moving
zone dispersion effects can be accounted for [28];
mixed retention mechanisms can be considered as
well [26]. Thus there is no a priori limit in handling
the complexity of the SEC problem, including the
effect of the pore heterogeneity and different size
separation mechanisms, e.g. separation by flow [29].
By the CF approach the exact peak shape can be
obtained by CF numerical inversion [27,30]. Further-
more the peak shape can be fully analyzed by
determining its statistical moments from the deriva-
tives of the CF [25].
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Here the stochastic theory of SEC is reconsidered
in the light of the characteristic function approach. A
general model for a single pore type (‘monopore’
model), a model for two pore types (‘two-pore
model), and a model accounting for dispersion
within the moving zone will be successively de-
veloped and exploited. Among the different band
broadening phenomena, attention will be focused
mainly on those determining size exclusion effects,
i.e. the pore ingress and egress processes. It must be
underlined that many of the models exploited have
potential impact for both column packing design and
SEC practice. However emphasis will be devoted
mostly to theoretical aspects of the CF approach and
to its potential results in SEC research. Exhaustive
handling of al the topics raised lies beyond the aims
of the present investigation, but they can be dealt
with separately.

2. Theory

2.1. Sze exclusion chromatographic quantities and
size exclusion thermodynamic quantities

The chromatographic parameters used to char-
acterize retention and separation in SEC and the
relationships between them are well known. How-
ever, in order to better appreciate the features of the
stochastic approach, it is useful to briefly recall them
and to discuss the sometimes overlooked hypotheses
which underlie these parameters and relationships.

In the following, we consider a well-defined
chemical species i of the sample, which is thus
assumed monodispersed. This species is retained in
the SEC column. Although the stochastic approach
does not imply a given retention mechanism and can
be adapted to any individual or mixed mechanism,
we consider here that this species is essentially
retained by a size exclusion mechanism. Retention is
thus based on partition of the sample species be-
tween two regions occupied by the carrier liquid in
the column: the interstitial space, where the carrier is
effectively flowing between the solid particles mak-
ing up the column and which is therefore called the
moving zone (labelled 0), and the space occupied by
the carrier in the porous structure inside the packing
particles. As the permeability of this porous structure

[4] is generally much lower than that of the intersti-
tial space, the carrier is assumed to be essentially
stagnant inside this intraparticle space which there-
fore is called the stagnant zone (labelled p, to recall
the pore structure concept). The volumes occupied
by the carrier in the moving and stagnant zones
within the column are denoted V;, and V,,, respective-
ly.

The accurate determination of these two volumes
is not obvious [5]. It is generally made by measuring
the retention times of two species, a totaly perme-
able species, supposed to have access to the whole
volume (V, +V,) occupied by the carrier in the
column and a species which is totally excluded from
the intraparticle porous structure. These species are
referred to by subscripts perm and excl, respectively.
It is reasonable to suppose that a small solute of a
molecular size similar to that of the carrier can
effectively act as a totally permeable species which
can sample the whole V;, +Vj, volume. However, the
selection of a totally excluded species is not trivial.
Indeed, a macromolecule large enough to be sterical-
ly excluded from the intraparticle volume is aso
likely to be sterically excluded from that part of the
interstitial volume in the immediate vicinity of the
outside surface of the solid particles. The retention
time of such a species is then more or less affected
by mechanisms involved in hydrodynamic chroma-
tography [4], and may differ somewhat from the
mean elution time t_0 of a hypothetical species which
would sample the whole volume V.

Two basic parameters are employed to experimen-
tally measure the retention of species i:

t(:,i - thXCl

t

1)

KSEC,i

c,perm c,excl

- tc excl
kir/ _—— (2)

tc,excl

where the various t_s are the mean residence times of
the corresponding species in the column. These times
correspond to the first moments of the peaks. In the
following, the bars over the quantities indicate mean
quantities, whereas quantities without the bar indi-
cate random variables. The use of this notation is
dictated by the sake of precision since here a
molecular stochastic approach is developed. We note
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that a E guantity corresponds to the classical defini-
tion of retention time (tg) of the corresponding
species. It is assumed that elution is carried out
under the condition of infinite dilution (linearity
condition). It is thus apparent that Kq.. is evaluated
by using three species (i, excl, perm) instead of two
as in other chromatographic techniques.

In order to derive the link between chromato-
graphic quantities and equilibrium or kinetic quan-
tities two groups of hypotheses must be assumed: the
first group is essentially chromatographic, the second
one relates to the statistical thermodynamics (ergodic
hypothesis).

t_c:,excl is first assumed to be the measure of the
mean time spent by an inert tracer in the moving
zone, t,:

HYP1 t_c,excl = t_0 (3)

Thus, no hydrodynamic chromatography effect is
acting on excl species transport, as mentioned above.
Likewise, al the species i, excl and perm are
assumed to spend the same mean time t, in the

moving zone:
HYP2 t_O,i = t_0 perm = t_O (4)

The mean times spent by the species i and perm in

mgn st;gf?r?gé ;;ne, t,; and t, ... respectively, are
t_p,i = t_c,i - 1:_(:,excl (5)
and

t_p, perm _c perm E:,excl (6)

If al the above mentioned hypotheses hold true,
the experimental measurements of either K. or k'

. t.t,
Ko = —R1 = Pd Operm @
SEC tp,perm tO,i tp perm
and
t .
K'=1 (8)

The total times spent by one molecule of the
different species in the moving or stagnant zones, t,
or t, are expressed by a sum of alarge number, n, or

n, of small time contributions, 7, or 7, which are the
times spent in that zone between two subsequent
zone changes. Because of the random character of
the chromatographic process, both the total time, t,
and the two individual quantities, n and 7, are
random quantities. However it can be intuitively
assumed that the mean total time t is equal to the
product of the mean values of the two individual
random n and 7 quantities, i.e. equal to n X 7. This
assumption is reasonable but its proof is not trivial: it
will be one of the results of the CF method (see the
following section). Therefore for the different species
and zones the following equations must hold true:

(a) E),i = I’Tp,iTp,i
(b) t,, =Ny 7.
ST HYP3 9
(C) E) perm rlp, permE), perm
(d) to, perm = r-]0, permTO, perm

By introducing Egs. (3), (4), (99—(9d) in Egs. (7)
and (8), one has:

K _ np,i'Tp,i r-]O,permTO,perm (10)
SEC,i — NN~ n =
: 0,i 7-O,i np, permTp, perm
N, 7
" p.I "p,l
k' == (11)
Ny i To,i

If the number of ingress steps is equal to the number
of egress steps from the stagnant zone, one has, for
both the species i and perm:

n.=n..
@ Mo, . }HYP4 (12)
(b) n0, perm — np, perm

By combining Egs. (12d), (12b), (10) and (11), one
obtains:

Keeei = 7=~ (13)
SEC, <E),perm>
7-O,perm
.
Lk
Sy (14)
and, by combining Egs. (13) and (14):
" ?0 erm
Kseci = Ki T ° (15)
p,perm
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In order that HYP 4 (Egs. (128) and (12b)), holds
true, it is required that no molecule of a given
species leaves the column without having ‘visited’
the stagnant zone. Moreover it is assumed that the
sample is introduced in the column in the moving
zone and the elution process starts immediately
before allowing the species to reach partition equilib-
rium between the two zones. If such a relaxation
process is not made — as is usual in chromatography
— HYP 4 is met only when the n quantities are large
enough and consequently there are no differences
between n, and n,. The problem will be handled
later on in the context of the stochastic theory.

Egs. (13) and (14) establish a link between
chromatographic quantities, K¢ and k”, and micro-
scopic kinetic quantities 7, provided that the hypoth-
eses 1-4 hold true. In order to establish a link
between chromatographic quantities and equilibrium
quantities, the ergodic hypothesis must be assumed
[31]. In the present case, this can be formulated by
saying that, in a phase exchange at equilibrium, the
mean number of molecules NZ‘?i in a given phase
domain 'V, is proportional to the mean time t,;; spent
in that phase domain by a single species:

HYP5 Ng =cgiV,ot,, (16)

where the superscript ‘eq’ indicates the ‘ equilibrium’
condition, i.e. that condition reached in a batch
process after a long time. Moreover it is assumed
that both the moving zone and the stagnant zone are
homogeneous from a thermodynamic point of view.
In practice, no mixed retention mechanisms are
considered here. Under these conditions, by intro-
ducing Eq. (16) into Eqg. (7), the following equation
is derived:
Co
e
Keee,i = T (17)

p, perm

eq
CO, perm
The classical expression:

Coi
Kseci = Zeq (18)

eq
Co,i

is obtained by assuming:

eq
_ Cp, perm

KSEC, perm — =1 (19)

eq
CO, perm

which specifies the properties of the perm species.

Likewise, by applying the ergodic hypothesis
(HYP 5, Eq. (16)) to an equilibrium condition over
the whole column volumesV;, and V, in Eg. (8), one
derives:

cl v
n _ Pkl P
ki - Cgfqi Vo (20)
and thus:
" VO
Kseci = ki VA (21)

P

Egs. (13) and (18) give, respectively, the kinetic
interpretation and the equilibrium—thermodynamic
interpretation of Ko, the ergodic hypothesis of Eq.
(16) being the bridge between them. It can be seen
that Kgzc, even if it cannot furnish estimates of the
separate kinetic quantities concerning the pore in-
gress and egress processes, nonetheless depends on
their ratio. Moreover it is alowed to translate the
various equilibrium thermodynamic models [3,8—12]
into the kinetic analogue. This correspondence can
indeed be found in theoretical handling of hindered
transport of large molecules in liquid-filled pores
[32]: both the methods employed and the derived
expressions accounting for the exclusion effects are
similar to those derived for SEC either by using a
pure equilibrium approach [9] or by solving the
diffusion equation [9,10].

The number of theoretical plates and the effective
number of theoretical plates are, respectively:

)

T\ 2
e-()
where ¢, is the standard deviation of the peak and:
t=t,=t- (24)

is the mean time spent in the stagnant zone. The
plate height is:
L

=N (25)
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L being the column length. The mean moving zone
velocity v, is related to t, by:

L=%,, (26)

The skewness and the excess are, respectively:

=3 (27)
o-t
K,

== (28)
gy

where «, and «, are the time-based third and fourth
cumulants of the chromatographic peak [33].

2.2. The stochastic description of the
chromatographic process

From a stochastic point of view, the chromato-
graphic process can be described as a chain of
ingress—egress random processes, i.e. state ex-
changes of the sample molecules between the mov-
ing zone and the stagnant zone occupied by the
carrier liquid.

Fig. 1 describes progress of single molecules in
the column by atrajectory in the (1, t) plane, | being
the position of the molecule along the column length
at the time t. Each molecular trajectory is composed
of a succession of slanting segments with slope equal
to the moving zone velocity v, and of horizontal
segments corresponding to the time 7, spent during
each step in the stagnant zone. An elementary
displacement step dl along the column axis corre-

totally totally
excluded species i permeable

species species
| j\ /L

length (1)

Il | 1

tﬂ tc,i time (t) tc,perm

Fig. 1. Chromatographic process represented as a stochastic
process. Each molecule history is represented as a random
trajectory in the I, t plane. Constant moving zone velocity case.

sponds to v,7,. In Fig. 1, both 7, and 7, are random
variables characterized by their frequency functions,
f(r,) and f(r,), respectively. The chromatographic
history and the corresponding trajectory will end
when the position | =L, where L is the column
length, is reached. Three types of molecules are
represented in Fig. 1: totally excluded molecules
aways staying in the moving zone and two other
types of molecules which are retained by the porous
structure. In Fig. 1, v, is assumed both constant and
independent of the species. The random character of
7, has the consequence that the column residence
time is a random quantity, characterized by a given
distribution, i.e. the chromatographic peak. This,
however, holds true only for retained species and not
for the totally excluded ones, since moving zone
dispersion factors are here neglected. According to
the picture of Fig. 1, the resultant residence time is a
sum of the random quantities 7, the number of terms
of the sum, n, also being a random variable. In fact n
is a random variable, with the specific distribution
function P(n), because of the random character of the
7, Qquantity. The task of the theory will be to
compute the result, i.e. the residence time distribu-
tion, under the most general conditions. One general
feature must however be pointed out: the stochastic
theory of chromatography isa‘pure’ chromatograph-
ic theory, describing the dynamical features of the
band migration [34-36]. Its strength lies in the
ability to master the ‘chromatographic complexity’
such as the combined effects of the stationary phase
heterogeneity, nonconstant moving zone velocity,
etc. This approach requires only the knowledge of
the statistical properties of the times spent by the
molecule in the different steps (rate constants for the
zone exchange, time distributions). The specific
physicochemica aspects of the various zones (mov-
ing, stagnant) are not explicitly considered.

2.3 Classical stochastic model of SEC

Carmichael’s work was based on the Giddings—
Eyring treatment which corresponds to well-defined
hypotheses about the statistical characteristics of the
column processes, simply considered as first-order
processes with an exponential time distribution func-
tion. This SEC model will be here referred to as the
Giddings—Eyring—Carmichael (GEC) model.

The fact that the time spent in the moving zone
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between two consecutive ingress steps has an ex-
ponential distribution function, has the important
consequence that P(n) is Poissonian. However it
must be pointed out that the property that the ingress
number is Poissonian does not mean that we can
identify a single ingress mechanism. The Poisson
distribution is, in fact, the ‘limit’ distribution for
‘point processes’, i.e. for an event series represented
as points over a time axis, here corresponding to
ingress events. This limit condition represents well
the case of superimposition of a great number of
point processes, corresponding to different ingress
mechanisms. However, even if strongly founded, the
Poisson distribution cannot be the only one driving
the pore ingress process. Pore access is more precise-
ly driven by Brownian movement: when a molecule
has arrived near a pore, it is likely that it visits this
pore more than once [36], before wandering to a new
pore. This matter has up to now been largely
unexplored in its dependency on both molecule type
and column structure. A general form for P(n) with
proper dependencies on the molecular size r and
pore size d, i.e. P(n; r, d) and for a given type of
column, must be allowed.

The second hypothesis of the GEC model is that
the time spent in a single pore is exponential and
independent of molecule size [17] athough the
relevance of this last constraint was discussed by
Carmichael [19]. Both of these hypotheses are too
restrictive and a general expression for the pore
residence time distribution f(r,; r, d) must likewise
be allowed. Under these conditions, the general SEC
model has only the constraints of constancy of the
moving zone velocity and independence of the
ingress and egress processes. This general SEC
model belongs to a broad class of stochastic pro-
cesses, the general composite processes or ‘mixture
processes’, extensively described in probability
theory. It can be shown [24,25] that the expression of
the stagnant zone retention time distribution has the
following form:

f(t,; r,d) :niw P{n; r, d}(t,|n; 1, d)

:niw P{n;r,d}f*"(z,; 1, d) (29)

where:

f(t,

represents the distribution of the time spent in the
stagnant zone by a molecule performing exactly n
ingress steps. The symbol *n means an n-fold
convolution. The distribution of the column resi-
dence time t,, is simply the t,, distribution scaled by

t,, since the hypothesis of constant moving zone
velocity was put forward:

n;r,d)=f*"(z;r,d) (30)

f(te: r, d) = f[(t, + to); 1, d] (31)

It must be observed that, in Eq. (29), P{n; r, d} may
be significant for n = 0 under certain conditions. This
means that the probability of performing zero entrap-
ment steps is significant and the relative number of
molecules travelling in the column without visiting
the stagnant zone will be high in these cases. This
will produce the so-called ‘ peak splitting’ at the time
scale origin. This point will be explained in the
Discussion.

2.4. The characteristic function method

The CF is defined as the Fourier transform of the
probability density function [33,37,38]:

Hw) = f e"f(t,) dit, (32)

where i is the imaginary unit and w an auxiliary real
variable (frequency). f(t,) dt. represents the infini-
tesimal probability that a molecule leaves the column
after a column residence time between t_, and t, +
dt..

The two CF expressions for the entry number, n,
and for the pore residence time, 7,, are, respectively:

@ (w;1,d) =2, €“"P(n; r, d) (33)
and
@, (w;r,d) = f e“®f(r,; 1, d)dr, (34)

The CF of the general model described by Eq. (29)
can be obtained by using a log-exp transformation
[24,25]:

{[In @Tp(w;r,d)] }
(o, )= | — [|:ind (35)
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where &, (w r, d) is the CF for the time t,, spent in
the stagnant zone by a molecule of dimensi on r,ina
column having pore size d:

b (i1, d) = f e f(t,; r, d) dt, (36)

Note the simplicity of the expression (35) stating
that, under general conditions, the CF of the stagnant
zone residence time is equal to that of the stagnant
zone entry number with the substitution of the
auxiliary variable o by the natural logarithm of the
pore residence time CF, divided by the imaginary
unit i.

The CF of the column residence time (i.e. includ-
ing the moving zone time t,), is obtained by
applying the shift properties in the Fourier domain
[38] to Eqg. (35):

@, (0;1,d) = @ (0;1,d) € (37)

Any type of model, meeting the above mentioned
hypothesis, of constant moving zone velocity can be
worked out and the pertinent CF obtained, by simply
specifying both @ (w; r, d) and @Tp(a); r, d) [38,39].
Once @, (w; r, d) is obtained, the statistical moments
of the pecak profile are calculated from the derivatives
evaluated at = 0. From these quantities all the
chromatographic quantitiest_C (i.e.tg), N,H, S E can
be computed [24,25]. The shape of the column
residence time distribution (i.e. the chromatographic
peak) can be obtained in al cases by numerical
inversion [26,28,30].

2.5. Exploitation of general monopore models
based on constant moving zone velocity

The genera monopore SEC model derived in the
previous section is too general and consequently
uninteresting in practice. However, from it, interest-
ing features are derived that hold true for al models
belonging to this class. More precisely, the features
singled out in the following will be common not only
to the GEC model for which the ingress process is
Poissonian and the pore egress process is exponen-
tial, but to any other case with the only constraint
that the ingress and egress processes be independent
of each other. The first moment is [24,25]:

t,=n,(r,d) 7,(r, d) (38)

where n (r, d) and 7,(r, d) are, respectively, the
mean values of the ingress step number and of the
time spent in a single pore. One can thus see that
Egs. (99—(9¢) hold true under these most general
conditions. Likewise one has the following equation
for the peak variance:

o, (1, d)° = [, (r, ) [P 7(r, ) ]2
+ 1, d)[ o, (r, ) ]2 (39)

where the o are the variances of the quantities
specified in the suffixes.

The HETP value corresponds, in this case, to the
C term of the Deemter equation since all moving

zone dispersive effects were neglected. It is [24]:

{ O-Tp(r7d) 2
e (ﬁ(nd))
.d)1]2 "
NN

. d) | (ot 12

vo(r, d) (40)

where v, is the constant moving zone velocity.

From Egs. (38) and (40), one can see that the
chromatographic quantities t, and H. are affected by
size effects both through the ingress process and
residence in the pore, i.e. by the quantities n,(r, d),
a'np(r, d), (r, d) and a;p(l’, d).

2.6. Monopore GEC model

The pore egress time distribution for this model is

exponential:
1 (1, d)
) eXp[ - ?Z(r, d) ] (41)

where 7.(r, d) is the mean time spent by the
molecule for each visit in the pores. The number of
ingress steps in pores is Poissonian:

exp[ —n(r, d)] x[n(r, d)]"
n!

flrn,r.d]=

Pln;r,d]= (42)
where n(r, d) is the mean ingress number for the
particular species.

It can be proved [25] for this model that the CF is:
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B 1
@ (w;r,d) = exp{np(f, d) [T?p(rd) - 1] }
(43)

The expression for the stagnant zone residence time
is, from Eq. (38):

t,=n,(r, d) 7.(r, d) (44)
and from Eq. (39) the pesk variance is:

afp = 2n,(r, d) 75(r, d) (45)
since

o, d) =0, (r,d) (46)
ny(r, d) = o7, (r,d) (47)

hold true because the time spent in the pore was
assumed to be exponentialy distributed and the
ingress process was assumed to be Poissonian. The
H; term is [35]:

"

Hc Zm UOTp(I‘, d) (48)
The molecule size selectivity of the SEC process
is reflected by the dependence of Kg.. on molecular
size r and on pore size d. In various geometrical—
equilibrium models of SEC, K. is expressed in
terms of a unique size parameter p defined as:

r

P=3 (49)
by the following relation [1,3-6]:
Keee,i = (1-p)" (50)

in which m is a parameter which depends on pore
shape. Hence, m is equal to 1, 2 or 3, respectively,
for dlit shaped pores, cylindrical pores of height
much greater than their diameter, and spherical or
conical pores [5,11]. It is aso possible for m to
assume noninteger values for more complex pore
shapes.

As mentioned above, the ergodic hypothesis al-
lows one to establish the correspondence between the
kinetic and equilibrium approaches of the SEC
process. Accordingly, as the total residence time in
the pore space is controlled by both the ingress

process (through ﬁp) and the egress process (through
7,), & can be seen from Eq. (9a), the SEC selectivity
can be understood as arising in part from each of
these processes. Thus one can write:

Ti(P) = Ty perm(1 = P)™ (51)
and
I‘Tp,i(p) = r_lp,perm(l - p)me (52)

since, by combining Egs. (7), (99, (9), (51) and
(52):

Ksec =(1 = p)me™me (53)
and, by comparing with Eg. (50), one has:

m=m, +m, (54)
Obviously, for p =0, the species i becomes the
totally permeable species, hence the subscript perm
appearing in the RHS terms of Egs. (51) and (52).
According to Egs. (12a) and (12b) (HYP 4), one gets
from Eq. (52):

ﬁo,i(P) = ﬁo,perm(l - P)me (55)
which together with HYP2, and Egs. (9b) and (9d),
gives:

FO,i(p) = Fo,perm(l - p)*me (56)
The effective number of theoretical plates for this
type of model is obtained from Egs. (23), (44) and
(45):

N, (p)

r__ _ P
I\Ii - 2 (57)
and thus combining Eq. (57) with Eq. (52) one has:
N{ = Npem(1—p)™ (58)
where

ﬁ erm
perm =" (59)

is the effective number of theoretical plates for the
totally permeable species.

By combining Egs. (50) and (58), one obtains:
N/ =N/, KL (60)

perm

where the parameter
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M _ M

m,+m,  m

a (61)
expresses the relative magnitude of the size exclu-
sion effect for the egress process (m,) with respect to
the total size exclusion effect (m). The domain here
considered is: 0=a <1 When a =1, m, is zero,
i.e. there is no size exclusion effect coming from the
pore ingress and the whole molecular size selectivity
arises from the inside of the pore. In the opposite
case, when « =0, the size exclusion determining
factor arises solely from the pore ingress process.
This last condition corresponds to the original GEC
model of SEC [17]. In addition to the possibility of
varying «, it must be underlined that the present
model can be exploited aso for different o ranges
outside the (0, 1) domain. This however corresponds
to different retention mechanisms, which are not
considered in the present study.
The skewness and the excess are:

3 1
S=3 (62)
KSEC,inerm
3
E=Tiayy (63)
KSEC,inerm

2.7. Two-pore GEC model

The previous GEC monopore model of SEC can
be extended to include the case of columns with two
types of pores of sizes d, and dy (d;>d,) and
volume fractions:

T (649)
LR VARES VAN
and
Pe=1-pa (64b)

where V, , and V, ; are the total pore volumes of
types A and B, respectively. A procedure similar to
that previously developed and applied to the case of
multiple-site adsorption chromatography [27,28] is
followed here. In Appendix A an extended discus-
sion of the two-pore model is presented. A simplified
model is here considered and discussed with the aim
of focusing on the relevant aspects of the problem. In
this section the index p indicating the pore is omitted

in the quantities n and 7 since they aways refer to
the pore space.

The SEC mechanisms for pores of types A and B
are assumed to be the same with the same values of
m, and m,. The expressions for the size effects of the
molecule i are:

M (98) = Mo Pa(L — )™ (659
s (Ps) = P Pa(1 — )™ (65b)
i (P) = g1~ )™ (663
Tas(P8) = Togrm(1— o)™ (66b)
where:

=g (679
and:

po= (675)

are the pore size parameters of the molecule i
referred to the d, and dy pore types.
The pertinent CF corresponding to Eq. (43) is:

D, (03 par Pp) = exp{ﬁA(pA) [TlFA(pA) - 1]

)| T 2
(68)

Note that, for the sake of simplicity, in this model
the pore differences are only accounted for by the
Size parameters p, and pg, in addition to the total
pore volume fractions, p, and pg. These simplified
assumptions are made in order to have a two-pore
model easy to exploit and to gain an initial insight
into the two-pore effect. Equations for the different
chromatographic quantities obtained under the above
referred hypotheses are given.
For r <d, <d; one has:

Ksec.ag = Pa(1— )"+ Pe(1—pg)"
= PaKsec a T PeKsec s (693
For d, <r <dg:

KSEC,AB =Ps KSEC,B (69D)
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and for r > dg:
Ksec,as =0 (690)

The expression of the effective plate number is
simplified if, as assumed by Carmichael [18], the
mean egress times of the permeable species in pores
A and B are equal (see Appendix A). In this instance,
for r <d, <dg, one gets:

N»’AB _ KXBJ'r,éEC
Ny Pa(1— pA)m(aJrl) +pe(1— PB)m(aJrl)
Kz;éEc
= a+1 a+1 (70a)

PaKsec a T PeKsecs

where N/, is the efficiency of a homogeneous

column which would provide the same K. value

for species i, and the same effective plate number for

a permeable species, as does the two-pore column.
For d, <r <dg, one gets:

N»’QB _ Al
Ne =P (70b)

The skewness for r <d, <dj is

3 Pa(1— pA)m+2mp + pg(l— pB)m+2mp
V 4N ;,)erm [pA(l - pA)m+mp + pB(l - pB)m+mp]213
(71)

S:

A corresponding expression is obtained for d, <r <
dg by noting that in this instance Kgze o = 0.

In order to exploit the two-pore GEC model, the
following average size parameter will be employed:

r

— 72
P a0, + pats (723
or:

1
R . (720)
P Pn Ps

p' is equal to p when d, =d; (see Eq. (49)).
2.8 Sochastic dispersive models of SEC

When the molecule is in the moving zone of areal
SEC column, it does not travel with a constant
velocity as previously assumed. Indeed, because of
various physical processes, such as molecular diffu-

sion, viscous flow nonuniformities and streamline
splitting around packing particles (a process some-
times called anastomosis or eddy diffusion), the time
t, spent by a molecule in the moving zone is a
random quantity. The contribution to the total band
broadening from this source is not negligible. It was
reported that it can contribute up to 50% of the total
band dispersion [1] and this must be accounted for.
The problem of non-constant moving zone velocity
was solved by the CF [25]. This last method is
followed here.

The distribution of residence time t, in the moving
zone is assumed to be Gaussian [28]:

to_t_o ’
| - "

1
)= v2n

where t, and o, are the mean and the standard
deviation, respectively. For the sake of simplicity o
is derived from the hypothetical expression of the
number of theoretical plates for a species visiting
only the moving zone:

(2

The handling of nonconstant moving zone velocity in
stochastic modelling of chromatography was dis-
cussed in Ref. [23] and it was recently applied by
some of the present authors to develop the stochastic
dispersive model of adsorption chromatography [28].
A similar approach is here followed and the details
are reported in Appendix B.

The resulting CF of the total residence time in the
column, including the moving zone dispersive effect
is.

B (@) = exp{ﬁp(p) [m - 1] +iwt

Ry U DA
+ 2N, n,(p) 1= inp(P) - +iwt,
(75)
Peak moments are obtained by differentiation [25]:
te=Ny(p) X 7,(p) + Lo (76)

and
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o 2
o1 (P) = 200,(p) X () + (77)

Eqg. (75) represents the solution for the monopore
GEC model of SEC including the dispersive effect.
By following the same approach, a two-pore model
or multiple-pore model including the dispersion
effect can be derived. Exploiting such complex cases
lies beyond the aim of the present work.

3. Discussion
3.1. Monopore model

By using the CF approach and by assuming simple
expressions for the size exclusion effects (see Egs.
(51) and (52)) the GEC model of SEC has been fully
developed (see Egs. (44)—(49), (53), (57)—(63)).
The general power law form of the size effects
employed here is based on the geometrical —equilib-
rium concept of SEC [3,9,11] making the com-
parison of the results straightforward. With respect to
the original treatment of Carmichael, a size effect
was alowed for both the ingress and egress pro-
cesses. Importantly, one notes that the factor 2
appearing in severa variance, plate height and plate
number expressions (see Egs. (45), (48) and (57))
was missing in the Carmichadl results [17]. This
factor 2 is, on the other hand, correctly reported by
Casassa and Tagami [10,13]. It is, in fact, the result
of two independent band broadening processes, one
coming from the ingress process and the other from
the egress process. When the former follows a
Poisson distribution and the latter an exponential one
(as in the Giddings—Eyring model), each contributes
avalue of unity for the two terms in brackets in Eq.
(40) and their sum is 2 [24].

The main result is given by Egs. (53) and (54)
where it is shown that retention is affected by both
the ingress and egress processes through parameter
m, whereas efficiency is only affected by the ingress
process through parameter m, (see Eq. (58)). Eq.
(60) establishes the link between retention and
efficiency through the critical parameter «, measur-
ing the relative relevance of the size effect inside the
pore with respect to the total size effect (see Eq.
(61)). Fig. 2 reports the dependence of Kg.. on the

0.8

0.6

Ksec

04 -

0.2 -

0

0 0i5 ] 1 1f5 2
o

Fig. 2. Kgc values vs. average size parameter value, p’. Com-

parison of monopore models at different m values with multiple-

pore models, e ” [3,11].

size parameter p’ for different selected values of m.
The main effect of parameter m is on selectivity
|dKgec/dpl: it is constant through the whole size
range for m=1, but decreases with increasing
species size for m>1. On the same figure we
compare the present monopore model (for which
Ksec becomes zero at p’ = 1) with other expressions
obtained for nonconstant pore size [1,3]. Another
interesting aspect to underline is that K. for the
stochastic model is the same as that in the geomet-
ric—equilibrium model [11]. This is not surprising
and it can be understood under the light of the above
discussion on the key role of the ergodic hypothesis
and of the expressions employed for the size effects.
Fig. 3 demonstrates the dependence of the effec-
tive number of theoretical plates on K. on chang-
ing parameter «. Only positive values of this param-
eter are considered because this assumption corre-
sponds to a pure exclusion mechanism. We can see
that the higher the parameter «, the greater is the
column efficiency. Practically, if the total size exclu-
sion effect is dominated by the egress process, i.e. by
the sizing effect inside the pore (a = 1), separation is
performed over the whole Ko domain with mini-
mum loss of efficiency, under the condition of p < 1.
Thus when the pore ingress process contributes to
the size separation effect, this is accompanied by an
efficiency loss and should be avoided if possible.
Series of chromatograms calculated with the
mono-pore model are presented in Figs. 4 and 5,
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Fig. 3. Monopore mode!: dependence of efficiency vs. Kg. for
different « values.

where the above mentioned effects can be detected.
Fig. 4 corresponds to the case of « =0 where the
rate of efficiency loss with decreasing Kg. is
constant (see Fig. 3). One can see in the insert of
Fig. 4 that, near the exclusion limit, the peak shape
becomes tailing and that peak splitting occurs just at
the origin. Peak tailing is characterized by the
skewness as expressed by Eq. (62), which also
predicts significant tailing when Kg . is close to
zero. The peak splitting effect is due to the fact that
some molecules leave the column without ever
entering a pore. This happens when Kg.. is very
small. It was shown that the relative amount of
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Fig. 4. Monopore model: theoretical chromatograms for different
Kgec vaues for e =0.
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Fig. 5. Monopore model: theoretical chromatograms for different
Kgec vaues for o =0.8.

molecules that do not enter a pore is proportional to
e ?M' (see Refs. [27,29]).

A comparison of Figs. 4 and 5 shows the effect of
increasing « on column efficiency. It can be seen
that a significant improvement is achieved especially
for dlightly retained species when « is increased
from 0 to 0.8. Fig. 6 illustrates the dramatic effect of
the change in « on the peak shape, for a constant
Kgec, Near the exclusion limit. Peak splitting dis-
appears and the peak becomes narrower higher and
more symmetrical when « is increased. All these
findings are particularly relevant for calibration
(where usually the peak maximum rather than the
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Fig. 6. Monopore model: effect of « change near to exclusion
limit.
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first moment is used) and in establishing a proper
deconvolution method for determining the molecular
mass distribution. One can see that it should be
relevant to know for the different columns, not only
the calibration plot of log M vs. K¢, but also N/
and the skewness vs. Kggc.

All the chromatograms reported in Figs. 4-6 as
well as the other chromatograms presented in the
following are obtained by numerical inversion of the
CF [30]. Chromatograms of Figs. 4—6 corresponding
to the GEC model could be aso obtained by using
the well known expression based on the Bessel
Function [14]. This would require in any case special
software to compute it. Numerical inversion now
available from many mathematical packages is gen-
eral for any CF expression and is thus the standard
method for building peak shape.

Development of the GEC model is relatively easy
and provides many useful insights. Now the question
is how general these results are and how dependent
they are on model hypotheses on the distributions of
the egress time and on the number of entries. It is
thus necessary to make a comparison between this
model and any other general monopore model. If the
same size parameter dependence is assumed for the
ingress and egress pore processes, K. will not be
affected, because this quantity, for both the general
model and the GEC model, derives from the same
Eqg. (38). A difference will instead appear in the
efficiency (as well as in any higher-order peak shape
parameter like S and E) if pore ingress and egress
processes are different from the Poisson and ex-
ponential one, respectively. It must be observed that
these hypotheses make the factors inside the brackets
of Eq. (40) both equal to unity and their sum equal
to 2 (see Eq. (48)), because of equalities (46) and
(47). This factor appears also in Egs. (57) and (59).
Consequently a deviation from unity in either of the
two terms inside the brackets will cause a difference
between the GEC model and any other.

Let us first assume that the ratios inside the
brackets of Eq. (40) are both different from unity
and independent of size parameter. In this case, the
values of each of these two terms are likely to be
greater than unity since it is hard to imagine a pore
ingress process less dispersed than the Poisson one
or an egress process more regular than first order
kinetics, corresponding to the exponentia. In this

instance, values of both N/ and N/, will be
affected in the same way (see Egs. (57) and (59)).
However, the ratio N/ /N, (see Eq. (60)) will not
be affected and Fig. 3 is thus valid for any general
monopore model. If, on the contrary, the terms in
brackets in Eq. (40) are size dependent, these effects
will appear in the column efficiency expressions.
However it is a difficult task to derive the pertinent
expressions by following the procedure presented
here. Still, exploration of the simple GEC model will
facilitate the understanding of these additional ef-
fects. Likewise the peak shape can be obtained by
numerical inversion of Eq. (43) under the sole
condition that the ingress and egress CF expression

be known in closed form.
3.2, Two-pore model

SEC packings with bimodal pore size distributions
have been proposed for their expanded calibration
range and optimum performances in characterizing
polydisperse polymer samples [40]. A full inves
tigation of peak shape features by the CF approach is
thus of practical relevance.

For the two-pore model, Figs. 7 and 8 illustrate the
dependence of Ko on the average size parameter p’
with m=1 and m=3, respectively. For smal
species, for which r <d, <dg, both pores are effec-
tive (this corresponds to the interval before the break
pointsin Fig. 7). In this domain the absolute value of
the slope is greater than for larger species that can
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Fig. 7. Two-pore model. K. values vs. average size parameter

value, p’, for m=1.
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Fig. 8. Two-pore model. K. values vs. average size parameter
vaue, p', for m=3.

enter only the wider pores. When p, is unity (r = d,),
there is no discontinuity in the slopes of the curves,
except for m= 1. In this case the plots are bilinear
(see Fig. 7) with a sharp slope change when p, = 1.
This can be understood with reference to Eq. (698
and (69b) which then show a linear dependence of
Kesece ON py and pg and consequently on p’. The
selectivity properties of the system are thus strongly
affected by the pore heterogeneity, as one can see by
comparing the main part and the insert in both Figs.
7 and 8 where two different pore size ratios are
considered. The effective number of theoretical
plates can be caculated with Eq. (70) for the two-
pore model. One of the consequences of pore size
heterogeneity is that efficiency is reduced compared
to the monopore model when cases for the same size
factor p are considered.

Figs. 9 and 10 report the efficiency of the two-
pore column relative to that of a homogeneous
monopore column providing the same K. value for
the species i and the same plate number for the
permeable species, for «=0.9 and a =0.1, respec-
tively. As the size of the species increases fewer
pores are penetrated, therefore the column efficiency
is reduced. This explains the drop of efficiency at the
beginning of the plots. The magnitude of the drop is
obviously increased when the proportion of the
narrow pores increases. The plateau before the drop
corresponds to a single-pore dominated mechanism
(due to the small pores) whereas, on the plateau after
the transition, species are totally excluded from the
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Fig. 9. Two-pore model: dependence of efficiency on p for
a=09.

small pores and the mechanism becomes a single-
pore one governed by the wide pores. This region is
described by Eq. (70b). In addition to the influence
of the relative amount of narrow pores, we can
observe, by comparing Figs. 9 and 10, that the
relative loss of efficiency is more significant when «
is larger. However, it must be kept in mind that Figs.
9 and 10 illustrate the relative effect of the two-pore
column with respect to the monopore case. If one
refers to Fig. 3, one can see that the efficiency of a
monopore column increases with increasing «, what-
ever the value of Kg.., the effect being larger for
larger species (lower Kq. values). This tempers the
influence of « on the efficiency loss noted above for
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Fig. 10. Two-pore model: dependence of efficiency on p for
a=0.1.



200 F. Dondi et al. / J. Chromatogr. A 943 (2002) 185-207

the two-pore column. In fact, it can be shown that,
keeping constant the values of Ko, and N,
values for the two individual pore types (A and B),
the plate number of a species i in the two-pore
column increases with increasing «, i.e. by increas-
ing the relative contribution of the egress process to
the size selectivity in SEC (see Eqg. (A.23) of
Appendix A).

For large species both selectivity and efficiency
are small, therefore a two-pore separation media will
not be useful. Thisis illustrated in Fig. 11 where the
peak splitting effect is distinct. If one compares Figs.
11 and 6, the adverse effect of pore size hetero-
geneity on species near the exclusion limit can be
evaluated. One can see that in the homogeneous case
peak splitting completely disappears at K. = 0.01
and « =0.2, whereas peak splitting persists in a
two-pore system even a o =1 for similar Kg.
values. Homogeneous packings are thus recom-
mended when working near the exclusion limit.

In Fig. 12, the mechanism generating such a
splitting effect is detailed. The broken lines show the
hypothetical peak shapes one would obtain on
homogeneous columns made of either pores A or
pores B. The solid line is the peak observed with a
two-pore system. The resulting peak shape is the
convolution of the two former peak shapes. It must
be underlined that in a two-pore column a specific
peak-splitting effect appears, different from that
observed in a homogeneous column. In the latter
case peak splitting is related to those molecules not
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Fig. 11. Two-pore model. Theoretical chromatograms of large
species illustrating the peak splitting effect at p, = 0.99.
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Fig. 12. Two-pore model. Theoretical chromatograms illustrating
the peak splitting. The total peak in the two-pore column (full
line) is the convolution of two peaks (dashed lines) from separate
monopore columns. a = 0.75.

visiting the stagnant zone. In the former case peak
splitting appears as a memory effect. The ripples in
Figs. 11 and 12 are the results of the numerical
inverse Fourier transform. Smoothing over the nu-
merically computed band profiles was not applied in
order to avoid altering the spikes that appear because
of the peak splitting effect.

Up to now hypothetical columns with two unique
and distinct pore sizes have been considered. Real
columns present, instead, continuous bimodal dis-
tributions of the pore dimensions [40]. This problem
can be fully handled by the CF approach, as shown
elsewhere in the case of the adsorption chromatog-
raphy [27]; however exhaustive treatment of this
problem lies beyond the aims of the present study.

3.3 Sochastic-dispersive model

Eq. (75) is the CF of the peak profile of a GEC
type model of SEC including the effect of non-
constant moving zone velocity. The dispersion of the
time t, spent in the moving zone leads to a rather
complex function which cannot be represented as a
simple convolution of the distribution function of t,
and t,, as postulated by Carmichael [41]. Some
molecules of a given species stay for alonger timein
the moving zone, thus having the chance of perform-
ing a greater number of pore ingresses. As we can
see from Eq. (76), the dispersion has no influence on
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retention time but Eq. (77) shows that the variance is
the sum of the variance contributions of the kinetic
component and the moving-zone dispersion. In Ref.
[26], a general discussion of the stochastic-dispersive
model of chromatography can be found. In order to
apply Eq. (75) to the SEC case, an assumption about
the N, value appearing in the various expressions
must be made. According to Giddings [21], the N,
expression is:

1 doar /2y 1
WO— L <U—O+—1 1) (78)

a ' Cu,

where a and C are constants, d,,, is the packing
particle diameter, y the obstructive factor and v, the
reduced velocity:
L_dpart
tODO

Vo= (79)
where D, is the diffusion coefficient of the analyte in
the carrier liquid. It should be noted that Eq. (78)
accounts for the contributions of both axia diffusion
and eddy diffusion (also called hydrodynamic disper-
sion) to the moving zone dispersion. The influence of
this dispersion on peak shape is specially significant
in the case of low efficiencies and asymmetric peaks,
as shown in Fig. 13: the peak due to peak splitting
around t, becomes more and more diffuse as the
relative contribution of the moving zone to the
overall band broadening increases (i.e. as N,/N’

No=10 N'
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Np=1000 N' +seveee
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Fig. 13. Stochastic-dispersive two-pore model: theoretical chro-
matograms illustrating the influence of N, over peak splitting.

decreases). It must be underlined that, in spite of the
complexity of the CF expression (see Eq. (75)),
obtaining the peak shape by numerical inversion is as
straightforward as in other more simple cases.

4. Conclusion

Monopore and two-pore GEC models, including
the dispersive effect, are successfully solved by
means of the CF. The main question is the physical
foundation of the model. Comments about the Pois-
son character of the pore ingress process appear
under the Theory section. The most important ques-
tions are about the exponentia character of the
egress time distribution and about the dependence of
the mean egress times 7,; or 7, ..., ON Size parame-
ter p. One must keep in mind that the pore egress by
the analyte molecules is governed by their Brownian
movement and thus one must refer to this for in-
depth information. The references in this field are so
abundant that it is hard to grasp a synthetic overview
[42]. However there is agreement that the pore
residence time distribution shows tailed forms, simi-
lar to the exponential one (see the case of Ref. [37],
Vol. 1, page 368). Thus, choosing such a hypothesis
as the first one to analyze seems logical. To exploit
different pore ingress and egress kinetics requires a
separate handling. It is worthwhile to observe that
Brownian processes are very often represented in
either the Laplace or Fourier domain and thus that
they can be directly integrated in the present CF
approach.

In this study the major aspects of SEC have been
considered. Several other size effects producing
separations [3,4,12] are left out. However they can
be handled within the stochastic description pre-
sented here by following the same procedure, either
in extending the monopore model to the two-pore
model or in handling the moving zone dispersive
effect. Moreover, till other aspects are left out, such
as the intraparticle diffusion giving rise to a H. term
contribution of type Cdf;artJO/Dp where D, is the
stagnant-phase diffusion coefficient of the species.
This term is dependent on the support structure and it
can be equally well handled by the CF approach
[28].
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5. Nomenclature

a constant

C constant

c concentration

CF characteristic function

d pore size

Apart support particle diameter

D, diffusion coefficient of the species in the
carrier liquid

De diffusion coefficient of the species in the
stagnant zone

E excess

() frequency function

GEC Giddings—Eyring—Carmichael (model)

H plate height

i imaginary unit

¢ zone capacity ratio

Keec distribution coefficient in SEC

I length

L column length

m, size factor exponent for the egress pro-
cess

m, size factor exponent for the ingress
process

m total size factor exponent

n number of steps

N number of species

N number of theoretical plates

N’ effective number of theoretical plates

p total pore volume fraction

P() or P{} probability

r size of species

S skewness

SEC size exclusion chromatography

residence time as stochastic variable
mean residence time

ts retention time

Vg moving zone velocity
Vg reduced velocity

\Y Volume

Symbol

| condition
Superscripts

- mean quantity

eq equilibrium quantity
* convolution

Subscripts

A A pore

AB A+ B pores

B B pore

0 moving zone

C C term of the van Deemter Equation

c quantity referred to the whole column
(stagnant and moving zones)

excl totally excluded species

H homogeneous column

i species i

p stagnant zone

part packing particle

perm totally permeable species

R retention quantity

Greek letters

a size factor ratio

B phase domain

0 obstructive factor

K, cumulant of order i

p size factor

p' average size factor

o, pesk standard deviation

T ingress time

T pore egress time

) auxiliary variable (frequency)

D characteristic function
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Appendix A. Two-pore model of SEC

One considers a column made of two kinds of
pores A and B, of sizes d, and d;. The volumes of
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the moving zone and of the stagnant zone in pores A
and B areV;, V, , andV, g, respectively. According to
the ergodic hypothesis applied to a permeable
species perm which can access the whole mobile
phase volume, both in the moving zone and in the

stagnant zone, one has:

eq — ~&d ¥

NO, perm — CO, permVOOCtO, perm (Al)
eq — ~€d s

Np,A, perm Cp,A, permVp,Aoctp,A, perm (A2)
eq — ~&d s

Np,B,perm - Cp,B,permVp,Boctp,B,perm (A3)

where the subscripts O; p, A; and p, B; refer to the
moving zone, the stagnant zone of pores A, and the
stagnant zone of pores B, respectively. Nod  cod
and t,,,, are the mean number of molecules of the
permeable species at equilibrium, the equilibrium
molar concentration of this species, and the mean
time spent by this species in a zone, respectively.
Since at equilibrium the molar concentrations of a
permeable species in the various zones are equal, one

obtains from Egs. (A.1)—(A.3):

tO,perm _ tp,A, perm tp,B,perm (A 4)
Vo Voa Vos )

The Kgee values, Kgee o and Kgee g, Of Speciesi in
homogeneous columns of pores A and B, are defined
by (see Eq. (7)):

t i
Keecai =7 - (A.5)
o 1:p,A,perm
and
to
p.B,i
Ksecsi = 3 (A.6)
p.B,perm

where t, ,; and t,; are the mean times spent by
species i in stagnant zones A and B, respectively.

Defining the apparent K. value of species i in
the mixed column containing pores A and B,
KSEC,AB,i’ as.

Lo a8,

t

(A7)

KSEC,AB,i
,AB, perm

where t, ,5; and t

p.AB, perm € the mean times spent

in the stagnant zones by speciesi and perm, respec-
tively, one gets:

toai

p.B,i

Ksecagi = t_va’perm T t_p,B,perm (A.8)
By combining Egs. (A.6)—(A.8), one gets:

Ksec agi = Pa Ksecai T Ps Keec g, (A.9)
with

t_p,A, perm

Pa= t_p,A, o t_p,B,perm (A.10)
and

Pe=1-ps (A.11)

Using Eq (A.4) to account for the ergodic hypoth-
esis, the weighting factor p, can be expressed in
terms of the pore volumes as:

Voa

P, = —Vp,A Voo (A12)

The mean time spent by species i in one stagnant
zone of a given type (A or B) is expressed in terms

of its mean number of pore egresses, n,;, and of its
mean egress time, 7, :
toi =N T (A.13)

As in the monopore case, one assumes that these
quantities are related to the corresponding ones for
the permeable species by similar relationships (see
Egs. (51) and (52)). By employing Egs. (50)—(52)
and (61) one gets:

I’Tp,A,i = np,A, perm(1 - pA)me

= I’Tp,A, permK éEgAI (A14)
I’Tp,B,i = ﬁp,B,perm(1 - pB)me
= ﬁp,B,perm Kégng (A15)

Tp,A,i = Fp,A, perm(l - pA)mp = Fp,A, perm KgEC,A,i (A16)

— _ m, — a
Tp,B,i - 7-p,B,perm(]- pB) P= 7-p,B, perm KSEC,B,i

(A.17)

where p, and pg are the ratios of molecular size to
sizes of pores A and B, respectively. «, defined by
Eqg. (61) reflects the relative contribution of the
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egress process to the size selectivity and is assumed
to be the same for pores A and B since the SEC
mechanism is assumed to be the same for these two
kinds of pores.

The variance arising from the stagnant zones is:

2 Bl = +
O-DABI O-pAl UpB|

:Z(npAl pAl +an| pBI)

The effective plate number for species i is defined
as:

(A.18)

—
’ tp,AB (npA| pAI+anITpBI)2

Npgi =2 = o - (A.19)
O-i,p,AB (npA| |pA+an| pBI)

Combining this expression with Egs. (A.3), (A.10),
(A.11)—(A.18), one gets:

[Pa(1 = p)™ + Pa(1— pp)"]?

N,ABi = 2 2
' Y p
2[5 Al p)" = <1—pB>m]
p.A,perm p,B, perm
(A.209)
or
, (pAKSEc,A,i + P KSEc,B,i)2
Nagi = p2 pz
A a B a
2<ﬁ Kseai ﬁ Kééc,B,i)
p,A,perm p.B,perm
(A.20b)
Writing
n
N perm =g (A.21)
n
NG perm =g (A.22)
this gives:
, (pAKSEc,A,i + P KSEC,B,i)Z
Nagi = 2 2 (A.23)
pA Kl+a 4+ pB K1+oz _
NA,perm SEC,Ai NB,perm SEC,B,i

One notes that, since the AB column is equivalent to
the A and B columns connected in series, Nj o
and Ng perm &€ the effective plate numbers of the
perm species in each of these individual columns,
respectively.

Of course, when the two kinds of pores become
identical (pz =0, p, = 1), one retrieves the expres-
sion for the mono-pore case:
Ni, = Nr’)ermKJSEg,i (A24)
as found in Eq. (60).

Writing Kgge a0 = Kgee g =1 in Eq. (A.23), one
obtains the effective plate number for the permeable
Species:

1

N oorm = (A.25)
hpe Pa_, _Ps
NA,perm I\IB,perm

When the pores A and B are identical, the ratio of the
pore volume fractions, p, and pg; becomes equal to
the ratio of the lengths of columns A and B con-
nected in series, and, hence to the ratio of their
effective plate numbers for a given species:

'
pA NA, perm

1-p. N

B, perm

(pores A= poresB) (A.26)

It can then be verified, by combining Egs. (A.25) and
(A.26), that:

N ! =
AB, perm
P Pa

+ N/

B, perm

N
- NA,perm

(pores A= poresB)
(A.27)

as one expects for columns packed with a given
material and connected in series.

One can consider a homogeneous column which
would provide the same K. value for species i,
given by Eq. (A.9), and the same effective plate
number for a permeable species, given by Eq.
(A.25), as does the two-pore column. By combining
Egs. (A.24) and (A.25), the effective plate number
for species i in the homogeneous column, Nj,; is
given by:

N, _ KéEgAB i (A 28)
" pa Ps '
N,’A perm NI; perm
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and, with Eq. (A.23), one gets:

2 2

pA K1+a + pB K1+a

! ! i ! i

NAB,i_ NA,perm SEC,AB,i NB,perm SEC,AB,i

I 2 2

NHJ Pa Kite 4 Pe KLire
N’ SEC,A,i N’ SEC,B,i
A, perm B, perm

(A.293)

or

!

NAB,i_

— =

NH,l

Pa Pa
A B
<N’ + N’ >(pA KSEC,A,i + Ps KSEC,B,i)l+

A, perm B, perm
2 2
pA 1+« pB 1+«
N’ KSEC,A,i + N’ KSEC,B,i
perm,A perm,B

(A.29b)

This eguation is quite general for a GEC two-pore
model. It shows that the ratio of the effective plate
number for the two-pore column to that for the
monopore column depends on the individual Kggo
values and on the pore volume fractions, and also on
the ratio of the effective plate numbers of the
permeable species for the two individual parts of the
two-pore column. If further assumptions are made,
the above expression can be simplified. For instance,
if the mean egress times of the permeable species in
pores A and B are equal (;p,A,perm: Fp,B,perm)! as
assumed by Carmichael, then, from (A.21) and
(A.22), one has:

!
NB,perm _ np,B,perm
7 = =
NA, perm np,A, perm
t_p,B,perm .
=T (constant perm egresstime)
p.A, perm

(A.30)

According to the ergodic hypothesis and Egs. (A.4),
(A.11) and (A.12), this becomes:

’
NB,perm _ &

N (constant perm egresstime)

(A.31)

!
A, perm A

Then, the effective plate number ratio can be ex-
pressed as:

' 1+ a
NAB,i KSEC,AB,i

1+a

! - 1+«
NH,i Pa KSEC,A,i + Ps KSEC,B,i

(constant perm egresstime) (A.32)

This is Eqg. (708) of the main text.

Appendix B. Stochastic-dispersive models of
SEC

The distribution of residence time in the moving
zone, t, is assumed to be Gaussian:

exp[ _M] (B.1)

2
20

1
N

where t, and o, are the mean and the standard
deviation, respectively. For the sake of simplicity o,
is derived from the hypothetical expression of the
number of theoretical plates for a species visiting
only the moving zone:

n=(2) (®2)

0y

It can be proved that the CF for the total residence
time in the column (including thus the moving zone
time) has the following general expression [21]:

@, (@) = @{M} (B8:3)

where @, is the characteristic function of the time
spent in the moving zone and @, is the CF of the
residence time in the column on the t, normalized
time scale, i.e. of the variable t /t,. The solution of
the dispersive model for the GEC case can be
obtained under the hypothesis that there is a unique
value of average time 7, spent in the moving zone
between an egress step and the subsequent ingress
step.

By applying CF shift and scaling transformations
[33,34], one has for the GEC monopore model:
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Ny(p; to) 1 .
D(w; P):eXp{ Pfo I:l_inp(p)_l:l_Hw}
(B.4)

where ﬁp( p; t,) is the average number of egress steps
for agiven t, value. This quantity depends on t,, but,
taking into account Egs. (9b) and (12a), its ratio with
respect to t, can be assumed to be constant and equal
to 1/7,:

NN 1 _
ot =e0( | g 2 1o}

(B.5)
The CF of Eq. (B.1) is [34]:

0t}
D, (w) = exp[lwt0 TN, :| (B.6)

By combining Egs. (B.3), (B.5) and (B.6) one
obtains the CF of the column residence time dis-
tribution (i.e. the peak shape), including the disper-
sive effect:

D, (w; p) = exp{ﬁp(p) [m -

JrziN0 <ﬁp(p) I:ﬁ;p(p)_l:l +iwﬁ)>2}

(B.7)

1] +iwt,

where, by considering Egs. (9b) and (12a), the
average number of sorption steps was defined as:

_ b
Ny(p) = ™ (B.8)
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